Skip to main content
Log in

Distributed Nash equilibrium seeking with order-reduced dynamics based on consensus exact penalty

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, we consider a networked game with coupled constraints and focus on variational Nash equilibrium seeking. For distributed algorithm design, we eliminate the coupled constraints by employing local Lagrangian functions and construct exact penalty terms to attain multipliers’ optimal consensus, which yields a set of equilibrium conditions without any coupled constraint and consensus constraint. Moreover, these conditions are only based on strategy and multiplier variables, without auxiliary variables. Then, we present a distributed order-reduced dynamics that updates the strategy and multiplier variables with guaranteed convergence. Compared with many other distributed algorithms, our algorithm contains no auxiliary variable, and therefore, it can save computation and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krilašević, S., & Grammatico, S. (2021). Learning generalized Nash equilibria in multi-agent dynamical systems via extremum seeking control. Automatica, 133, 109846.

    Article  MathSciNet  MATH  Google Scholar 

  2. Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., & Rus, D. (2019). Social behavior for autonomous vehicles. Proceedings of the National Academy of Sciences, 116(50), 24972–24978.

    Article  MathSciNet  MATH  Google Scholar 

  3. Grammatico, S. (2017). Dynamic control of agents playing aggregative games with coupling constraints. IEEE Transactions on Automatic Control, 62(9), 4537–4548.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhu, R., Zhang, J., You, K., & Başar, T. (2022). Asynchronous networked aggregative games. Automatica, 136, 110054.

    Article  MathSciNet  MATH  Google Scholar 

  5. Yi, P., Hong, Y., & Liu, F. (2016). Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica, 74(12), 259–269.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lu, K., Li, G., & Wang, L. (2020). Online distributed algorithms for seeking generalized Nash equilibria in dynamic environments. IEEE Transactions on Automatic Control, 66(5), 2289–2296.

    Article  MathSciNet  MATH  Google Scholar 

  7. Facchinei, F., & Kanzow, C. (2010). Generalized Nash equilibrium problems. Annals of Operations Research, 175(1), 177–211.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kulkarni, A. A., & Shanbhag, U. V. (2012). On the variational equilibrium as a refinement of the generalized Nash equilibrium. Automatica, 48(1), 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lu, K., Jing, G., & Wang, L. (2018). Distributed algorithms for searching generalized Nash equilibrium of noncooperative games. IEEE Transactions on Cybernetics, 49(6), 2362–2371.

    Article  Google Scholar 

  10. Yi, P., & Pavel, L. (2019). An operator splitting approach for distributed generalized Nash equilibria computation. Automatica, 102, 111–121.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bianchi, M., & Grammatico, S. (2021). Continuous-time fully distributed generalized Nash equilibrium seeking for multi-integrator agents. Automatica, 129, 109660.

    Article  MathSciNet  MATH  Google Scholar 

  12. Liang, S., Zeng, X., & Hong, Y. (2018). Distributed nonsmooth optimization with coupled inequality constraints via modified Lagrangian function. IEEE Transactions on Automatic Control, 63(6), 1753–1759.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, W., Zeng, X., Liang, S., & Hong, Y. (2022). Exponentially convergent algorithm design for constrained distributed optimization via non-smooth approach. IEEE Transactions on Automatic Control, 67(2), 934–940.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, C., & Hu, G. (2021). Distributed generalized Nash equilibrium seeking for monotone generalized noncooperative games by a regularized penalized dynamical system. IEEE Transactions on Cybernetics, 51(11), 5532–5545.

    Article  Google Scholar 

  15. Rockafellar, R. T., & Wets, R. J. B. (1998). Variational Analysis. Grundlehren der mathematischen Wissenschaften, vol. 317. New York: Springer.

  16. Clarke, F. H., Ledyaev, Y. S., Stern, R. J., & Wolenski, P. R. (1998). Nonsmooth Analysis and Control Theory. . Graduate Texts in Mathematics, vol. 178. New York: Springer.

    Google Scholar 

  17. Facchinei, F., & Pang, J. (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems. Operations Research. New York: Springer.

    MATH  Google Scholar 

  18. Godsil, C., & Royle, G. F. (2001). Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207. New York: Springer.

    MATH  Google Scholar 

  19. Cherukuri, A., & Cortés, J. (2016). Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment. Automatica, 74(12), 183–193.

    Article  MathSciNet  MATH  Google Scholar 

  20. Falsone, A., Margellos, K., Garatti, S., & Prandini, M. (2017). Dual decomposition for multi-agent distributed optimization with coupling constraints. Automatica, 84, 149–158.

    Article  MathSciNet  MATH  Google Scholar 

  21. Filippov, A. F. (1988). Differential Equations with Discontinuous Righthand Sides. Massachusetts: Kluwer Academic.

    Book  Google Scholar 

  22. Zheng, L., Li, H., Ran, L., Gao, L., & Xia, D. (2022). Distributed primal-dual algorithms for stochastic generalized Nash equilibrium seeking under full and partial-decision information. IEEE Transactions on Control of Network Systems.

  23. Bianchi, M., Belgioioso, G., & Grammatico, S. (2022). Fast generalized Nash equilibrium seeking under partial-decision information. Automatica, 136, 110080.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zeng, X., Chen, J., Liang, S., & Hong, Y. (2019). Generalized Nash equilibrium seeking strategy for distributed nonsmooth multi-cluster game. Automatica, 103, 20–26.

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, Z., Niyato, D., Saad, W., & Başar, T. (2019). Game Theory for Next Generation Wireless and Communication Networks: Modeling, Analysis, and Design. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiguang Hong.

Additional information

This work was supported in part by the National Key Research and Development Program of China under grant 2022YFA1004700, and in part by the Natural Science Foundation of China under grant 72171171, and in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Liu, S., Hong, Y. et al. Distributed Nash equilibrium seeking with order-reduced dynamics based on consensus exact penalty. Control Theory Technol. 21, 363–373 (2023). https://doi.org/10.1007/s11768-023-00166-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00166-7

Keywords

Navigation