Skip to main content
Log in

A Lyapunov characterization of robust policy optimization

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, we study the robustness property of policy optimization (particularly Gauss–Newton gradient descent algorithm which is equivalent to the policy iteration in reinforcement learning) subject to noise at each iteration. By invoking the concept of input-to-state stability and utilizing Lyapunov’s direct method, it is shown that, if the noise is sufficiently small, the policy iteration algorithm converges to a small neighborhood of the optimal solution even in the presence of noise at each iteration. Explicit expressions of the upperbound on the noise and the size of the neighborhood to which the policies ultimately converge are provided. Based on Willems’ fundamental lemma, a learning-based policy iteration algorithm is proposed. The persistent excitation condition can be readily guaranteed by checking the rank of the Hankel matrix related to an exploration signal. The robustness of the learning-based policy iteration to measurement noise and unknown system disturbances is theoretically demonstrated by the input-to-state stability of the policy iteration. Several numerical simulations are conducted to demonstrate the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, L. Cui, upon reasonable request.

References

  1. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.

    MATH  Google Scholar 

  2. Fazel, M., Ge, R., Kakade, S., & Mesbahi, M. (2018). Global convergence of policy gradient methods for the linear quadratic regulator. In Proceedings of the 35th international conference on machine learning. vol. 80, pp. 1467–1476.

  3. Bu, J., Mesbahi, A., Fazel, M., & Mesbahi, M. (2019). LQR through the lens of first order methods: Discrete-time case. arXiv:1907.08921 (arXiv e-preprint).

  4. Hu, B., Zhang, K., Li, N., Mesbahi, M., Fazel, M., & Başar, T. (2022). Towards a theoretical foundation of policy optimization for learning control policies. Annual Review of Control, Robotics, and Autonomous Systems, 6(1), 123–158. https://doi.org/10.1146/annurev-control-042920-020021

    Article  Google Scholar 

  5. Mohammadi, H., Zare, A., Soltanolkotabi, M., & Jovanovic, M. R. (2022). Convergence and sample complexity of gradient methods for the model-free linear-quadratic regulator problem. IEEE Transactions on Automatic Control, 67(5), 2435–2450.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kleinman, D. (1968). On an iterative technique for Riccati equation computations. IEEE Transactions on Automatic Control, 13(1), 114–115. https://doi.org/10.1109/TAC.1968.1098829

    Article  Google Scholar 

  7. Hewer, G. (1971). An iterative technique for the computation of the steady state gains for the discrete optimal regulator. IEEE Transactions on Automatic Control, 16(4), 382–384. https://doi.org/10.1109/TAC.1971.1099755

    Article  Google Scholar 

  8. Bertsekas, D. P. (1995). Dynamic programming and optimal control (Vol. 2). Athena Scientific.

    MATH  Google Scholar 

  9. Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena Scientific.

    MATH  Google Scholar 

  10. Jiang, Y., & Jiang, Z. P. (2012). Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), 2699–2704. https://doi.org/10.1016/j.automatica.2012.06.096

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Y., & Jiang, Z. P. (2015). Global adaptive dynamic programming for continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 60(11), 2917–2929. https://doi.org/10.1109/TAC.2015.2414811

    Article  MathSciNet  MATH  Google Scholar 

  12. Cui, L., Pang, B., & Jiang, Z. P. (2023). Learning-based adaptive optimal control of linear time-delay systems: A policy iteration approach. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2023.3273786

    Article  Google Scholar 

  13. Pang, B., Jiang, Z. P., & Mareels, I. (2020). Reinforcement learning for adaptive optimal control of continuous-time linear periodic systems. Automatica, 118, 109035. https://doi.org/10.1016/j.automatica.2020.109035

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, W., & Jiang, Z. P. (2016). Adaptive dynamic programming and adaptive optimal output regulation of linear systems. IEEE Transactions on Automatic Control, 61(12), 4164–4169. https://doi.org/10.1109/TAC.2016.2548662

    Article  MathSciNet  MATH  Google Scholar 

  15. Pang, B., Cui, L., & Jiang, Z. P. (2022). Human motor learning is robust to control-dependent noise. Biological Cybernetics, 116(12), 307–325.

    Article  MATH  Google Scholar 

  16. Liu, T., Cui, L., Pang, B., & Jiang, Z. P. (2021). Data-driven adaptive optimal control of mixed-traffic connected vehicles in a ring road. In 2021 60th IEEE conference on decision and control (CDC), pp. 77–82. https://doi.org/10.1109/CDC45484.2021.9683024.

  17. Cui, L., Ozbay, K., & Jiang, Z. P. (2021) Combined longitudinal and lateral control of autonomous vehicles based on reinforcement learning. In: 2021 American control conference (ACC), pp. 1929–1934. https://doi.org/10.23919/ACC50511.2021.9483388.

  18. Ljung, L. (1998). System identification (pp. 163–173). Birkhäuser. https://doi.org/10.1007/978-1-4612-1768-8_11

    Book  Google Scholar 

  19. Jiang, Z. P., Bian, T., & Gao, W. (2020). Learning-based control: A tutorial and some recent results. Foundations and Trends in Systems and Control, 8(3), 176–284. https://doi.org/10.1561/2600000023

    Article  Google Scholar 

  20. Cui, L., Başar, T., & Jiang, Z. P. (2022). A reinforcement learning look risk-sensitive linear quadratic Gaussian control. In 5th Annual Learning for Dynamics and Control Conference, pp. 534–546.

  21. Pang, B., & Jiang, Z. P. (2023). Reinforcement learning for adaptive optimal stationary control of linear stochastic systems. IEEE Transactions on Automatic Control, 68(4), 2383–2390. https://doi.org/10.1109/TAC.2022.3172250

    Article  MathSciNet  MATH  Google Scholar 

  22. Cui, L., Wang, S., Zhang, J., Zhang, D., Lai, J., Zheng, Y., Zhang, Z., & Jiang, Z. P. (2021). Learning-based balance control of wheel-legged robots. IEEE Robotics and Automation Letters, 6(4), 7667–7674. https://doi.org/10.1109/LRA.2021.3100269

    Article  Google Scholar 

  23. Sontag, E. (2008). Input to state stability: Basic concepts and results. Lecture notes in mathematics (pp. 163–220). Springer.

    MATH  Google Scholar 

  24. Pang, B., & Jiang, Z. P. (2021). Robust reinforcement learning: A case study in linear quadratic regulation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10), 9303–9311.

    Article  Google Scholar 

  25. Pang, B., Bian, T., & Jiang, Z. P. (2022). Robust policy iteration for continuous-time linear quadratic regulation. IEEE Transactions on Automatic Control, 67(1), 504–511. https://doi.org/10.1109/TAC.2021.3085510

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, B. M. (2013). In J. Baillieul & T. Samad (Eds.), H2 optimal control. Springer. https://doi.org/10.1007/978-1-4471-5102-9_204-1

  27. Chen, C.-T. (1999). Linear system theory and design. Oxford University Press.

  28. Mori, T. (1988). Comments on “A matrix inequality associated with bounds on solutions of algebraic Riccati and Lyapunov equation’’ by J. M. Saniuk and I.B. Rhodes. IEEE Transactions on Automatic Control, 33(11), 1088. https://doi.org/10.1109/9.14428

    Article  MATH  Google Scholar 

  29. Hespanha, J. P. (2018). Linear systems theory. Princeton University Press.

  30. Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control. Prentice Hall.

    MATH  Google Scholar 

  31. Willems, J. C., Rapisarda, P., Markovsky, I., & De Moor, B. L. M. (2005). A note on persistency of excitation. Systems and Control Letters, 54(4), 325–329. https://doi.org/10.1016/j.sysconle.2004.09.003

    Article  MathSciNet  MATH  Google Scholar 

  32. Gahinet, P. M., Laub, A. J., Kenney, C. S., & Hewer, G. A. (1990). Sensitivity of the stable discrete-time Lyapunov equation. IEEE Transactions on Automatic Control, 35(11), 1209–1217. https://doi.org/10.1109/9.59806

    Article  MathSciNet  MATH  Google Scholar 

  33. Anderson, C. W. (1989). Learning to control an inverted pendulum using neural networks. IEEE Control Systems Magazine, 9(3), 31–37. https://doi.org/10.1109/37.24809

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Cui.

Additional information

This work was supported in part by the National Science Foundation (Nos. ECCS-2210320, CNS-2148304).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Jiang, ZP. A Lyapunov characterization of robust policy optimization. Control Theory Technol. 21, 374–389 (2023). https://doi.org/10.1007/s11768-023-00163-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00163-w

Keywords

Navigation