Skip to main content
Log in

Contracted product of hypermatrices via STP of matrices

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

An equivalent definition of hypermatrices is introduced. The matrix expression of hypermatrices is proposed. Using permutation matrices, the conversion between different matrix expressions is revealed. The various kinds of contracted products of hypermatrices are realized by semi-tensor products (STP) of matrices via matrix expressions of hypermatrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vasilescu, M. A. O., & Terzopoulos, D. (2003). Multilinear subspace analysis of image ensembles. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings (Vol. 2, pp. II–93). IEEE.

  2. De Lathauwer, L., De Moor, B., & Vandewalle, J. (2001). Independent component analysis and (simultaneous) third-order tensor diagonalization. IEEE Transactions on Signal Processing, 49(10), 2262–2271.

    Article  Google Scholar 

  3. De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). On the best rank-1 and rank-\((R_1, R_2,\ldots , R_n)\) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 21(4), 1324–1342.

    Article  MathSciNet  MATH  Google Scholar 

  4. Lim, L. H. (2013). Tensors and hypermatrices. In: Hogben, L. (ed.) Handbook of linear algebra, chap 15, pp. 1–30.

  5. Bush, B., Culp, J., & Pearson, K. (2019). Perron–Frobenius theorem for hypermatrices in the max algebra. Discrete Mathematics, 342(1), 64–73.

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan, Z., Deng, C., Li, H., & Bu, C. (2020). Multiplications and eigenvalues of tensors via linear maps. Linear and Multilinear Algebra, 68(3), 606–621.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, D. (2001). Semi-tensor product of matrices and its application to Morgen’s problem. Science in China Series: Information Sciences, 44, 195–212.

    MathSciNet  MATH  Google Scholar 

  8. Cheng, D., Qi, H., & Li, Z. (2010). Analysis and control of Boolean networks—A semi-tensor product approach. Springer.

    Google Scholar 

  9. Cheng, D., Qi, H., & Zhao, Y. (2012). An introduction to semi-tensor product of matrices and its applications. World Scientific.

    Book  MATH  Google Scholar 

  10. Fornasini, E., & Valcher, M. E. (2016). Recent developments in Boolean networks control. Journal of Control and Decision, 3(1), 1–18.

    Article  MathSciNet  Google Scholar 

  11. Li, H., Zhao, G., Meng, M., & Feng, J. (2018). A survey on applications of semi-tensor product method in engineering. Science China Information Sciences, 61, 1–17.

    MathSciNet  Google Scholar 

  12. Lu, J., Li, H., Liu, Y., & Li, F. (2017). Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory & Applications, 11(13), 2040–2047.

    Article  MathSciNet  Google Scholar 

  13. Rushdi, A. M. A., & Ghaleb, F. A. M. (2016). A tutorial exposition of semi-tensor products of matrices with a stress on their representation of Boolean functions. Journal of King Abdulaziz University: Computing and Information Technology Sciences, 5(1), 3–30.

    Google Scholar 

  14. Cheng, D., Wu, Y., Zhao, G., & Fu, S. (2021). A comprehensive survey on STP approach to finite games. Journal of Systems Science and Complexity, 34(5), 1666–1680.

    Article  MathSciNet  MATH  Google Scholar 

  15. Yan, Y., Cheng, D., Feng, J. E., Li, H., & Yue, J. (2023). Survey on applications of algebraic state space theory of logical systems to finite state machines. Science China Information Sciences, 66(1), 1–20.

    Article  MathSciNet  Google Scholar 

  16. Cheng, D. (2019). On equivalence of matrices, Asian. Journal of Mathematics, 23(2), 257–348.

    MathSciNet  MATH  Google Scholar 

  17. Cheng, D. (2019). From dimension-free matrix theory to cross-dimensional dynamic systems. Elsevier.

    MATH  Google Scholar 

  18. Cheng, D., & Liu, Z. (2019). A new semi-tensor product of matrices. Control Theory and Technology, 17(1), 4–12.

    Article  MathSciNet  Google Scholar 

  19. Cheng, D., & Ji, Z. (2023). Lecture Notes in Semi-Tensor Product of Matrices, Vol. 4: Finite and Dimensional-free Dynamic Systems. Science Press. (in Chinese).

  20. Cheng, D., Zhang, X., & Ji, Z. (2023). Semi-tensor product of hypermatrices with application to compound hypermatrices. arxiv:2303.06295.

  21. Cheng, D., Ji, Z., Feng, J. E., Fu, S., & Zhao, J. (2021). Perfect hypercomplex algebras: Semi-tensor product approach. Mathematical Modelling and Control, 1(4), 177–187.

    Article  Google Scholar 

  22. Cheng, D., & Qi, H. (2020). Lecture Notes in Semi-Tensor Product of Matrices, Vol. 1: Basic Theory and Multilinear Operation. Science Press. (in Chinese).

  23. Cheng, D., & Qi, H. (2007). Semi-tensor product of matrices—Theory and applications. Science Press.

    Google Scholar 

  24. Cheng, D., & Ji, Z. (2023). From dimension-free manifolds to dimension-varying (control) systems. Communications in Information and Systems, 23(1), 85–150.

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheng, D., He, F., Qi, H., & Xu, T. (2015). Modeling, analysis and control of networked evolutionary games. IEEE Transactions on Automatic Control, 60(9), 2402–2415.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Ji.

Additional information

This work was supported partly by the National Natural Science Foundation of China (NSFC) (Nos. 62073315, 62103305), the Shanghai Pujiang Program (No. 21PJ 1413100), and China Postdoctoral Science Foundation (Nos. 2021M703423, 2022T150686).

Appendix

Appendix

In the following, some permutation matrices are listed.

  1. 1.

    \(d=3\), \(n=2\):

    1. (i)

      \(\sigma _1:[1,2,3]\rightarrow [1,2,3]\):

      $$\begin{aligned} W_2^{\sigma _1}=\delta _8[1,2,3,4,5,6,7,8]. \end{aligned}$$
    2. (ii)

      \(\sigma _2:[1,2,3]\rightarrow [1,3,2]\):

      $$\begin{aligned} W_2^{\sigma _2}=\delta _8[1,3,2,4,5,7,6,8]. \end{aligned}$$
    3. (iii)

      \(\sigma _3:[1,2,3]\rightarrow [2,1,3]\):

      $$\begin{aligned} W_2^{\sigma _3}=\delta _8[1,2,5,6,3,4,7,8]. \end{aligned}$$
    4. (iv)

      \(\sigma _4:[1,2,3]\rightarrow [2,3,1]\):

      $$\begin{aligned} W_2^{\sigma _4}=\delta _8[1,3,5,7,2,4,6,8]. \end{aligned}$$
    5. (v)

      \(\sigma _5:[1,2,3]\rightarrow [3,1,2]\):

      $$\begin{aligned} W_2^{\sigma _5}=\delta _8[1,5,2,6,3,7,4,8]. \end{aligned}$$
    6. (vi)

      \(\sigma _6:[1,2,3]\rightarrow [3,2,1]\):

      $$\begin{aligned} W_2^{\sigma _6}=\delta _8[1,5,3,7,2,6,4,8]. \end{aligned}$$
  2. 2.

    \(d=3\), \(n=3\):

    1. (i)

      \(\sigma _1:[1,2,3]\rightarrow [1,2,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _1}=&{}\delta _{27}[ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,\\ &{} 15,16,17,18,19,20,21,22,23,24,\\ &{} 25,26,27]. \end{array} \end{aligned}$$
    2. (ii)

      \(\sigma _2:[1,2,3]\rightarrow [1,3,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _2}=&{}\delta _{27}[1,4,7,2,5,8,3,6,9,10,13,16,11,14,\\ &{}17,12,15,18,19,22,25,20,23,26,\\ &{}21,24,27]. \end{array} \end{aligned}$$
    3. (iii)

      \(\sigma _3:[1,2,3]\rightarrow [2,1,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _3}=&{}\delta _{27}[1,2,3,10,11,12,19,20,21,4,5,6,13,\\ &{}14,15,22,23,24,7,8,9,16,17,18,\\ &{}25,26,27]. \end{array} \end{aligned}$$
    4. (iv)

      \(\sigma _4:[1,2,3]\rightarrow [2,3,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _4}=&{}\delta _{27}[1,10,19,2,11,20,3,12,21,4,13,22,\\ &{} 5,14,23,6,15,24,7,16,25,8,17,26,\\ &{}9,18,27]. \end{array} \end{aligned}$$
    5. (v)

      \(\sigma _5:[1,2,3]\rightarrow [3,1,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _5}=&{}\delta _{27}[1,4,7,10,13,16,19,22,25,2,5,8,11,\\ &{}14,17,20,23,26,3,6,9,12,15,18,\\ &{}21,24,27]. \end{array} \end{aligned}$$
    6. (vi)

      \(\sigma _6:[1,2,3]\rightarrow [3,2,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _6}=&{}\delta _{27}[1,10,19,4,13,22,7,16,25,2,11,20,\\ &{}5,x14,23,8,17,26,3,12,21,6,15,24,\\ &{}9,18,27]. \end{array} \end{aligned}$$
  3. 3.

    \(d=3\), \(n=4\):

    1. (i)

      \(\sigma _1:[1,2,3]\rightarrow [1,2,3]\):

      $$\begin{aligned} \begin{array}{rl} W_4^{\sigma _1}=&{}\delta _{64}[1,2,3,4,5,6,7,8,9,10,11,12,13,14,\\ &{}15,16,17,18,19,20,21,22,23,24,25,26,\\ &{}27,28,29,30,31,32,33,34,35,36,37,38,\\ &{}39,40,41,42,43,44,45,46,47,48,49,50,\\ &{}51,52,53,54,55,56,57,58,59,60,\\ &{}61,62,63,64]. \end{array} \end{aligned}$$
    2. (ii)

      \(\sigma _2:[1,2,3]\rightarrow [1,3,2]\):

      $$\begin{aligned} \begin{array}{rl} W_4^{\sigma _2}=&{}\delta _{64}[1,5,9,13,2,6,10,14,3,7,11,15,4,\\ &{}8,1216,17,21,25, 29,18,22,26,30,19,23,\\ &{}27,31,20,24,28,32,33,37,41,45,34,38,\\ &{}42,46,35,39,43,47,36,40,44,48,49,53,\\ &{}57,61,50,54,58,62,51,55,59,63,\\ &{}52,56,60,64]. \end{array} \end{aligned}$$
    3. (iii)

      \(\sigma _3:[1,2,3]\rightarrow [2,1,3]\):

      $$\begin{aligned} \begin{array}{rl} W_4^{\sigma _3}=&{}\delta _{64}[1,2,3,4,17,18,19,20,33,34,35,36,\\ &{}49,50,51,52,5,6,7,8,21,22,23,24,37,\\ &{}38,39,40,53,54,55,56,9,10,11,12,25,\\ &{}26,27,28,41,42,43,44,57,58,59,60,13,\\ &{}14,15,16,29,30,31,32,45,46,47,48,61,\\ &{}62,63,64]. \end{array} \end{aligned}$$
    4. (iv)

      \(\sigma _4:[1,2,3]\rightarrow [2,3,1]\):

      $$\begin{aligned} \begin{array}{rl} W_4^{\sigma _4}=&{}\delta _{64}[1,17,33,49,2,18,34,50,3,19,35,51,\\ &{}4,20,36,52,5,21,37,53,6,22,38,54,7,\\ &{}23,39,55,8,24,40,56,9,25,41,57,10,\\ &{}26,42,58,11,27,43,59,12,28,44,60,13,\\ &{}29,45,61,14,30,46,62,15,31,47,63,16,\\ &{}32,48,64]. \end{array} \end{aligned}$$
    5. (v)

      \(\sigma _5:[1,2,3]\rightarrow [3,1,2]\):

      $$\begin{aligned} \begin{array}{rl} W_4^{\sigma _5}=&{}\delta _{64}[1,5,9,13,17,21,25,29,33,37,41,45,\\ &{}49,53,57,61,2,6,10,14,18,22,26,30,\\ &{}34,38,42,46,50,54,58,62,3,7,11,15,\\ &{}19,23,27,31,35,39,43,47,51,55,59,63,\\ &{}4,8,12,16,20,24,28,32,36,40,44,48,\\ &{}52,56,60,64]. \end{array} \end{aligned}$$
    6. (vi)

      \(\sigma _6:[1,2,3]\rightarrow [3,2,1]\):

      $$\begin{aligned} \begin{array}{rl} W_4^{\sigma _6}=&{}\delta _{64}[1,17,33,49,5,21,37,53,9,25,41,57,\\ &{}13,29,45,61,2,18,34,50,6,22,38,54,\\ &{}10,26,42,58,14,30,46,62,3,19,35,51,\\ &{}7,23,39,55,11,27,43,59,15,31,47,63,\\ &{}4,20,36,52,8,24,40,56,12,28,44,60,\\ &{}16,32,48,64]. \end{array} \end{aligned}$$
  4. 4.

    \(d=4\), \(n=2\):

    1. (i)

      \(\sigma _1:[1,2,3,4]\rightarrow [1,2,3,4]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _1}=&{}\delta _{16}[1,2,3,4,5,6,7,8,9,10,11,12,13,\\ &{}14,15,16]. \end{array} \end{aligned}$$
    2. (ii)

      \(\sigma _2:[1,2,3,4]\rightarrow [1,2,4,3]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _2}=&{}\delta _{16}[1,3,2,4,5,7,6,8,9,11,10,12,13,\\ &{}15,14,16]. \end{array} \end{aligned}$$
    3. (iii)

      \(\sigma _3:[1,2,3,4]\rightarrow [1,3,2,4]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _3}=&{}\delta _{16}[1,2,5,6,3,4,7,8,9,10,13,14,11,\\ &{}12,15,16]. \end{array} \end{aligned}$$
    4. (iv)

      \(\sigma _4:[1,2,3,4]\rightarrow [1,3,4,2]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _4}=&{}\delta _{16}[1,5,2,6,3,7,4,8,9,13,10,14,11,\\ &{}15,12,16]. \end{array} \end{aligned}$$
    5. (v)

      \(\sigma _5:[1,2,3,4]\rightarrow [1,4,2,3]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _5}=&{}\delta _{16}[1,3,5,7,2,4,6,8,9,11,13,15,10,\\ &{}12,14,16]. \end{array} \end{aligned}$$
    6. (vi)

      \(\sigma _6:[1,2,3,4]\rightarrow [1,4,3,2]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _6}=&{}\delta _{16}[1,5,3,7,2,6,4,8,9,13,11,15,10,\\ &{}14,12,16]. \end{array} \end{aligned}$$
    7. (vii)

      \(\sigma _7:[1,2,3,4]\rightarrow [2,1,3,4]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _7}=&{}\delta _{16}[1,2,3,4,9,10,11,12,5,6,7,8,13,\\ &{}14,15,16]. \end{array} \end{aligned}$$
    8. (viii)

      \(\sigma _8:[1,2,3,4]\rightarrow [2,1,4,3]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _8}=&{}\delta _{16}[1,3,2,4,9,11,10,12,5,7,6,8,13,\\ &{}15,14,16]. \end{array} \end{aligned}$$
    9. (ix)

      \(\sigma _9:[1,2,3,4]\rightarrow [2,3,1,4]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _9}=&{}\delta _{16}[1,2,9,10,3,4,11,12,5,6,13,14,7,\\ &{}8,15,16]. \end{array} \end{aligned}$$
    10. (x)

      \(\sigma _{10}:[1,2,3,4]\rightarrow [2,3,4,1]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{10}}=&{}\delta _{16}[1,9,2,10,3,11,4,12,5,13,6,14,\\ &{}7,15,8,16]. \end{array} \end{aligned}$$
    11. (xi)

      \(\sigma _{11}:[1,2,3,4]\rightarrow [2,4,1,3]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{11}}=&{}\delta _{16}[1,3,9,11,2,4,10,12,5,7,13,15,6,\\ &{}8,14,16]. \end{array} \end{aligned}$$
    12. (xii)

      \(\sigma _{12}:[1,2,3,4]\rightarrow [2,4,3,1]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{12}}=&{}\delta _{16}[1,9,3,11,2,10,4,12,5,13,7,15,\\ &{}6,14,8,16]. \end{array} \end{aligned}$$
    13. (xiii)

      \(\sigma _{13}:[1,2,3,4]\rightarrow [3,1,2,4]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{13}}=&{}\delta _{16}[1,2,5,6,9,10,13,14,3,4,7,8,11,\\ &{}12,15,16]. \end{array} \end{aligned}$$
    14. (xiv)

      \(\sigma _{14}:[1,2,3,4]\rightarrow [3,1,4,2]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{14}}=&{}\delta _{16}[1,5,2,6,9,13,10,14,3,7,4,8,11,\\ &{}15,12,16]. \end{array} \end{aligned}$$
    15. (xv)

      \(\sigma _{15}:[1,2,3,4]\rightarrow [3,2,1,4]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{15}}=&{}\delta _{16}[1,5,2,6,9,13,10,14,3,7,4,8,11,\\ &{}15,12,16]. \end{array} \end{aligned}$$
    16. (xvi)

      \(\sigma _{16}:[1,2,3,4]\rightarrow [3,2,4,1]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{16}}=&{}\delta _{16}[1,9,2,10,5,13,6,14,3,11,4,12,7,\\ &{}15,8,16]. \end{array} \end{aligned}$$
    17. (xvii)

      \(\sigma _{17}:[1,2,3,4]\rightarrow [3,4,1,2]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{17}}=&{}\delta _{16}[1,5,9,13,2,6,10,14,3,7,11,15,4,\\ &{}8,12,16]. \end{array} \end{aligned}$$
    18. (xviii)

      \(\sigma _{18}:[1,2,3,4]\rightarrow [3,4,2,1]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{18}}=&{}\delta _{16}[1,9,5,13,2,10,6,14,3,11,7,15,4,\\ &{}12,8,16]. \end{array} \end{aligned}$$
    19. (xix)

      \(\sigma _{19}:[1,2,3,4]\rightarrow [4,1,2,3]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{19}}=&{}\delta _{16}[1,3,5,7,9,11,13,15,2,4,6,8,10,\\ &{}12,14,16]. \end{array} \end{aligned}$$
    20. (xx)

      \(\sigma _{20}:[1,2,3,4]\rightarrow [4,1,3,2]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{20}}=&{}\delta _{16}[1,5,3,7,9,13,11,15,2,6,4,8,10,\\ &{}14,12,16]. \end{array} \end{aligned}$$
    21. (xxi)

      \(\sigma _{21}:[1,2,3,4]\rightarrow [4,2,1,3]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{21}}=&{}\delta _{16}[1,3,9,11,5,7,13,15,2,4,10,12,6,\\ &{}8,14,16]. \end{array} \end{aligned}$$
    22. (xxii)

      \(\sigma _{22}:[1,2,3,4]\rightarrow [4,2,3,1]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{22}}=&{}\delta _{16}[1,9,3,11,5,13,7,15,2,10,4,12,6,\\ &{}14,8,16]. \end{array} \end{aligned}$$
    23. (xxiii)

      \(\sigma _{23}:[1,2,3,4]\rightarrow [4,3,1,2]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{23}}=&{}\delta _{16}[1,5,9,13,3,7,11,15,2,6,10,14,4,\\ &{}8,12,16]. \end{array} \end{aligned}$$
    24. (xxiv)

      \(\sigma _{24}:[1,2,3,4]\rightarrow [4,3,2,1]\):

      $$\begin{aligned} \begin{array}{rl} W_2^{\sigma _{24}}=&{}\delta _{16}[1,9,5,13,3,11,7,15,2,10,6,14,4,\\ &{}12,8,16]. \end{array} \end{aligned}$$
  5. 5.

    \(d=4\), \(n=3\):

    1. (i)

      \(\sigma _1:[1,2,3,4]\rightarrow [1,2,3,4]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _1}=&{}\delta _{81}[1,2,3,4,5,6,7,8,9,10,11,12,13,14,\\ &{}15,16,17,18,19,20,21,22,23,24,25,26,\\ &{}27,28,29,30,31,32,33,34,35,36,37,38,\\ &{}39,40,41,42,43,44,45,46,47,48,49,50,\\ &{}51,52,53,54,55,56,57,58,59,60,61,62,\\ &{}63,64,65,66,67,68,69,70,71,72,73,74,\\ &{}75,76,77,78,79,80,81]. \end{array} \end{aligned}$$
    2. (ii)

      \(\sigma _2:[1,2,3,4]\rightarrow [1,2,4,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _2}=&{}\delta _{81}[1,4,7,2,5,8,3,6,9,10,13,16,11,14,\\ &{}17,12,15,18,19,22,25,20,23,26,21,24,\\ &{}27,28,31,34,29,32,35,30,33,36,37,40,\\ &{}43,38,41,44,39,42,45,46,49,52,47,50,\\ &{}53,48,51,54,55,58,61,56,59,62,57,60,\\ &{}63,64,67,70,65,68,71,66,69,72,73,76,\\ &{}79,74,77,80,75,78,81]. \end{array} \end{aligned}$$
    3. (iii)

      \(\sigma _3:[1,2,3,4]\rightarrow [1,3,2,4]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _3}=&{}\delta _{81}[1,2,3,10,11,12,19,20,21,4,5,6,13,\\ &{}14,15,22,23,24,7,8,9,16,17,18,25,26,\\ &{}27,28,29,30,37,38,39,46,47,48,31,32,\\ &{}33,40,41,42,49,50,51,34,35,36,43,44,\\ &{}45,52,53,54,55,56,57,64,65,66,73,74,\\ &{}75,58,59,60,67,68,69,76,77,78,61,62,\\ &{}63,70,71,72,79,80,81]. \end{array} \end{aligned}$$
    4. (iv)

      \(\sigma _4:[1,2,3,4]\rightarrow [1,3,4,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _4}=&{}\delta _{81}[1,10,19,2,11,20,3,12,21,4,13,22,\\ &{}5,14,23,6,15,24,7,16,25,8,17,26,9,\\ &{}18,27,28,37,46,29,38,47,30,39,48,31,\\ &{}40,49,32,41,50,33,42,51,34,43,52,35,\\ &{}44,53,36,45,54,55,64,73,56,65,74,57,\\ &{}66,75,58,67,76,59,68,77,60,69,78,61,\\ &{}70,79,62,71,80,63,72,81]. \end{array} \end{aligned}$$
    5. (v)

      \(\sigma _5:[1,2,3,4]\rightarrow [1,4,2,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _5}=&{}\delta _{81}[1,4,7,10,13,16,19,22,25,2,5,8,11,\\ &{}14,17,20,23,26,3,6,9,12,15,18,21,24,\\ &{}27,28,31,34,37,40,43,46,49,52,29,32,\\ &{}35,38,41,44,47,50,53,30,33,36,39,42,\\ &{}45,48,51,54,55,58,61,64,67,70,73,76,\\ &{}79,56,59,62,65,68,71,74,77,80,57,60,\\ &{}63,66,69,72,75,78,81]. \end{array} \end{aligned}$$
    6. (vi)

      \(\sigma _6:[1,2,3,4]\rightarrow [1,4,3,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _6}=&{}\delta _{81}[1,10,19,4,13,22,7,16,25,2,11,20,5,\\ &{}14,23,8,17,26,3,12,21,6,15,24,9,18,27,\\ &{}28,37,46,31,40,49,34,43,52,29,38,47,\\ &{}32,41,50,35,44,53,30,39,48,33,42,51,\\ &{}36,45,54,55,64,73,58,67,76,61,70,79,\\ &{}56,65,74,59,68,77,62,71,80,57,66,75,\\ &{}60,69,78,63,72,81]. \end{array} \end{aligned}$$
    7. (vii)

      \(\sigma _7:[1,2,3,4]\rightarrow [2,1,3,4]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _7}=&{}\delta _{81}[1,2,3,4,5,6,7,8,9,28,29,30,31,32,\\ &{}33,34,35,36,55,56,57,58,59,60,61,62,\\ &{}63,10,11,12,13,14,15,16,17,18,37,38,\\ &{}39,40,41,42,43,44,45,64,65,66,67,68,\\ &{}69,70,71,72,19,20,21,22,23,24,25,26,\\ &{}27,46,47,48,49,50,51,52,53,54,73,74,\\ &{}75,76,77,78,79,80,81]. \end{array} \end{aligned}$$
    8. (viii)

      \(\sigma _8:[1,2,3,4]\rightarrow [2,1,4,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _8}=&{}\delta _{81}[1,4,7,2,5,8,3,6,9,28,31,34,29,32,\\ &{}35,30,33,36,55,58,61,56,59,62,57,60,\\ &{}63,10,13,16,11,14,17,12,15,18,37,40,\\ &{}43,38,41,44,39,42,45,64,67,70,65,68,\\ &{}71,66,69,72,19,22,25,20,23,26,21,24,\\ &{}8 27,46,49,52,47,50,53,48,51,54,73,\\ &{}76,79,74,77,0,75,78,81]. \end{array} \end{aligned}$$
    9. (ix)

      \(\sigma _9:[1,2,3,4]\rightarrow [2,3,1,4]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _9}=&{}\delta _{81}[1,2,3,28,29,30,55,56,57,4,5,6,31,\\ &{}32,33,58,59,60,7,8,9,34,35,36,61,62,\\ &{}63,10,11,12,37,38,39,64,65,66,13,14,\\ &{}15,40,41,42,67,68,69,16,17,18,43,44,\\ &{}45,70,71,72,19,20,21,46,47,48,73,74,\\ &{}75,22,23,24,49,50,51,76,77,78,25,26,\\ &{}27,52,53,54,79,80,81]. \end{array} \end{aligned}$$
    10. (x)

      \(\sigma _{10}:[1,2,3,4]\rightarrow [2,3,4,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{10}}=&{}\delta _{81}[1,28,55,2,29,56,3,30,57,4,31,58,\\ &{}5,32,59,6,33,60,7,34,61,8,35,62,9,\\ &{}36,63,10,37,64,11,38,65,12,39,66,13,\\ &{}40,67,14,41,68,15,42,69,16,43,70,17,\\ &{}44,71,18,45,72,19,46,73,20,47,74,21,\\ &{}48,75,22,49,76,23,50,77,24,51,78,25,\\ &{}52,79,26,53,80,27,54,81]. \end{array} \end{aligned}$$
    11. (xi)

      \(\sigma _{11}:[1,2,3,4]\rightarrow [2,4,1,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{11}}=&{}\delta _{81}[1,4,7,28,31,34,55,58,61,2,5,8,29,\\ &{}32,35,56,59,62,3,6,9,30,33,36,57,60,\\ &{}63,10,13,16,37,40,43,64,67,70,11,14,\\ &{}17,38,41,44,65,68,71,12,15,18,39,42,\\ &{}45,66,69,72,19,22,25,46,49,52,73,76,\\ &{}79,20,23,26,47,50,53,74,77,80,21,24,\\ &{}27,48,51,54,75,78,81]. \end{array} \end{aligned}$$
    12. (xii)

      \(\sigma _{12}:[1,2,3,4]\rightarrow [2,4,3,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{12}}=&{}\delta _{81}[1,28,55,4,31,58,7,34,61,2,29,56,5,\\ &{}32,59,8,35,62,3,30,57,6,33,60,9,36,\\ &{}63,10,37,64,13,40,67,16,43,70,11,38,\\ &{}65,14,41,68,17,44,71,12,39,66,15,42,\\ &{}69,18,45,72,19,46,73,22,49,76,25,52,\\ &{}79,20,47,74,23,50,77,26,53,80,21,48,\\ &{}75,24,51,78,27,54,81]. \end{array} \end{aligned}$$
    13. (xiii)

      \(\sigma _{13}:[1,2,3,4]\rightarrow [3,1,2,4]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{13}}=&{}\delta _{81}[1,2,3,10,11,12,19,20,21,28,29,30,\\ &{}37,38,39,46,47,48,55,56,57,64,65,66,\\ &{}73,74,75,4,5,6,13,14,15,22,23,24,31,\\ &{}32,56,57,64,65,66,73,74,75,4,5,6,13,\\ &{}14,15,22,23,24,31,32,16,17,18,25,26,\\ &{}27,34,35,36,43,44,45,52,53,54,61,62,\\ &{}63,70,71,72,79,80,81]. \end{array} \end{aligned}$$
    14. (xiv)

      \(\sigma _{14}:[1,2,3,4]\rightarrow [3,1,4,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{14}}=&{}\delta _{81}[1,10,19,2,11,20,3,12,21,28,37,46,\\ &{}29,38,47,30,39,48,55,64,73,56,65,74,\\ &{}57,66,75,4,13,22,5,14,23,6,15,24,31,\\ &{}40,49,32,41,50,33,42,51,58,67,76,59,\\ &{}68,77,60,69,78,7,16,25,8,17,26,9,18,\\ &{}27,34,43,52,35,44,53,36,45,54,61,70,\\ &{}79,62,71,80,63,72,81]. \end{array} \end{aligned}$$
    15. (xv)

      \(\sigma _{15}:[1,2,3,4]\rightarrow [3,2,1,4]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{15}}=&{}\delta _{81}[1,10,19,2,11,20,3,12,21,28,37,\\ &{}46,29,38,47,30,39,48,55,64,73,56,\\ &{}65,74,57,66,75,4,13,22,5,14,23,6,\\ &{}15,24,31,40,49,32,41,50,33,42,51,\\ &{}58,67,76,59,68,77,60,69,78,7,16,\\ &{}25,8,17,26,9,18,27,34,43,52,35,\\ &{}44,53,36,45,54,61,70,79,62,71,80,\\ &{}63,72,81]. \end{array} \end{aligned}$$
    16. (xvi)

      \(\sigma _{16}:[1,2,3,4]\rightarrow [3,2,4,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{16}}=&{}\delta _{16}[1,28,55,2,29,56,3,30,57,10,37,\\ &{}64,11,38,65,12,39,66,19,46,73,20,\\ &{}47,74,21,48,75,4,31,58,5,32,59,6,\\ &{}33,60,13,40,67,14,41,68,15,42,69,\\ &{}22,49,76,23,50,77,24,51,78,7,34,\\ &{}61,8,35,62,9,36,63,16,43,70,17,44,\\ &{}71,18,45,72,25,52,79,26,53,80,27,\\ &{}54,81]. \end{array} \end{aligned}$$
    17. (xvii)

      \(\sigma _{17}:[1,2,3,4]\rightarrow [3,4,1,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{17}}=&{}\delta _{81}[1,10,19,28,37,46,55,64,73,2,\\ &{}11,20,29,38,47,56,65,74,3,12,21,\\ &{}30,39,48,57,66,75,4,13,22,31,40,\\ &{}49,58,67,76,5,14,23,32,41,50,59,\\ &{}68,77,6,15,24,33,42,51,60,69,78,\\ &{}7,16,25,34,43,52,61,70,79,8,17,\\ &{}26,35,44,53,62,71,80,9,18,27,36,\\ &{}45,54,63,72,81]. \end{array} \end{aligned}$$
    18. (xviii)

      \(\sigma _{18}:[1,2,3,4]\rightarrow [3,4,2,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{18}}=&{}\delta _{81}[1,28,55,10,37,64,19,46,73,2,\\ &{}29,56,11,38,65,20,47,74,3,30,57,\\ &{}12,39,66,21,48,75,4,31,58,13,40,\\ &{}67,22,49,76,5,32,59,14,41,68,23,\\ &{}50,77,6,33,60,15,42,69,24,51,78,\\ &{}7,34,61,16,43,70,25,52,79,8,35,\\ &{}62,17,44,71,26,53,80,9,36,63,18,\\ &{}45,72,27,54,81]. \end{array} \end{aligned}$$
    19. (xix)

      \(\sigma _{19}:[1,2,3,4]\rightarrow [4,1,2,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{19}}=&{}\delta _{81}[1,4,7,10,13,16,19,22,25,28,31,\\ &{}34,37,40,43,46,49,52,55,58,61,64,\\ &{}67,70,73,76,79,2,5,8,11,14,17,20,\\ &{}23,26,29,32,35,38,41,44,47,50,53,\\ &{}56,59,62,65,68,71,74,77,80,3,6,9,\\ &{}12,15,18,21,24,27,30,33,36,39,42,\\ &{}45,48,51,54,57,60,63,66,69,72,75,\\ &{}78,81]. \end{array} \end{aligned}$$
    20. (xx)

      \(\sigma _{20}:[1,2,3,4]\rightarrow [4,1,3,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{20}}=&{}\delta _{81}[1,10,19,4,13,22,7,16,25,28,37,\\ &{}46,31,40,49,34,43,52,55,64,73,58,\\ &{}67,76,61,70,79,2,11,20,5,14,23,8,\\ &{}17,26,29,38,47,32,41,50,35,44,53,\\ &{}56,65,74,59,68,77,62,71,80,3,12,\\ &{}21,6,15,24,9,18,27,30,39,48,33,42,\\ &{}51,36,45,54,57,66,75,60,69,78,63,\\ &{}72,81]. \end{array} \end{aligned}$$
    21. (xxi)

      \(\sigma _{21}:[1,2,3,4]\rightarrow [4,2,1,3]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{21}}=&{}\delta _{81}[1,4,7,28,31,34,55,58,61,10,13,\\ &{}16,37,40,43,64,67,70,19,22,25,46,\\ &{}49,52,73,76,79,2,5,8,29,32,35,56,\\ &{}59,62,11,14,17,38,41,44,65,68,71,\\ &{}20,23,26,47,50,53,74,77,80,3,6,9,\\ &{}30,33,36,57,60,63,12,15,18,39,42,\\ &{}45,66,69,72,21,24,27,48,51,54,75,\\ &{}78,81]. \end{array} \end{aligned}$$
    22. (xxii)

      \(\sigma _{22}:[1,2,3,4]\rightarrow [4,2,3,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{22}}=&{}\delta _{81}[1,28,55,4,31,58,7,34,61,10,37,\\ &{}64,13,40,67,16,43,70,19,46,73,22,\\ &{}49,76,25,52,79,2,29,56,5,32,59,8,\\ &{}35,62,11,38,65,14,41,68,17,44,71,\\ &{}20,47,74,23,50,77,26,53,80,3,30,\\ &{}57,6,33,60,9,36,63,12,39,66,15,42,\\ &{}69,18,45,72,21,48,75,24,51,78,27,\\ &{}54,81]. \end{array} \end{aligned}$$
    23. (xxiii)

      \(\sigma _{23}:[1,2,3,4]\rightarrow [4,3,1,2]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{23}}=&{}\delta _{81}[1,10,19,28,37,46,55,64,73,\\ &{}4,13,22,31,40,49,58,67,76,7,\\ &{}16,25,34,43,52,61,70,79,2,11,\\ &{}20,29,38,47,56,65,74,5,14,23,\\ &{}32,41,50,59,68,77,8,17,26,35,\\ &{}44,53,62,71,80,3,12,21,30,39,\\ &{}48,57,66,75,6,15,24,33,42,51,\\ &{}60,69,78,9,18,27,36,45,54,63,\\ &{}72,81]. \end{array} \end{aligned}$$
    24. (xxiv)

      \(\sigma _{24}:[1,2,3,4]\rightarrow [4,3,2,1]\):

      $$\begin{aligned} \begin{array}{rl} W_3^{\sigma _{24}}=&{}\delta _{81}[1,28,55,10,37,64,19,46,73,4,\\ &{}31,58,13,40,67,22,49,76,7,34,61,\\ &{}16,43,70,25,52,79,2,29,56,11,38,\\ &{}65,20,47,74,5,32,59,14,41,68,23,\\ &{}50,77,8,35,62,17,44,71,26,53,80,\\ &{}3,30,57,12,39,66,21,48,75,6,33,\\ &{}60,15,42,69,24,51,78,9,36,63,18,\\ &{}45,72,27,54,81]. \end{array} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Meng, M., Zhang, X. et al. Contracted product of hypermatrices via STP of matrices. Control Theory Technol. 21, 265–280 (2023). https://doi.org/10.1007/s11768-023-00155-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00155-w

Keywords

Navigation