Skip to main content
Log in

Synchronization of second-order Kuramoto networks from the perspective of edge dynamics

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper presents new synchronization conditions for second-order phase-coupled Kuramoto oscillators in terms of edge dynamics. Two types of network-underlying graphs are studied, the positively weighted and signed graphs, respectively. We apply an edge Laplacian matrix for a positively weighted network to represent the edge connections. The properties of the edge Laplacian matrix are analyzed and incorporated into the proposed conditions. These conditions take account of the dynamics of edge-connected oscillators instead of all oscillator pairs in conventional studies. For a network with positive and negative weights, we represent the network by its spanning tree dynamics, and derive conditions to evaluate the synchronization state of this network. These conditions show that if all edge weights in the spanning tree are positive, and the tree-induced dynamics are in a dominant position over the negative edge dynamics, then this network achieves synchronization. The theoretical findings are validated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ermentrout, B. (1991). An adaptive model for synchrony in the firefly pteroptyx malaccae. Journal of Mathematical Biology, 29(6), 571–585.

    Article  MathSciNet  MATH  Google Scholar 

  2. Wiesenfeld, K., Colet, P., & Strogatz, S. (1998). Frequency locking in Josephson arrays: Connection with the Kuramoto model. Physical Review E, 57(2), 1563–1569. https://doi.org/10.1103/PhysRevE.57.1563

    Article  Google Scholar 

  3. Li, Z., Xue, X., & Yu, D. (2014). Synchronization and transient stability in power grids based on Łojasiewicz inequalities. SIAM Journal on Control and Optimization, 52(4), 2482–2511. https://doi.org/10.1137/130950604

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, H., Chen, G., Liao, X., & Huang, T. (2017). Attraction region seeking for power grids. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(2), 201–205. https://doi.org/10.1109/TCSII.2016.2561410

    Article  Google Scholar 

  5. Zhu, L., & Hill, D. J. (2018). Stability analysis of power systems: A network synchronization perspective. SIAM Journal on Control and Optimization, 56(3), 1640–1664. https://doi.org/10.1137/17M1118646

    Article  MathSciNet  MATH  Google Scholar 

  6. Dörfler, F., & Bullo, F. (2012). Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM Journal on Control and Optimization, 50(3), 1616–1642. https://doi.org/10.1137/110851584

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, Y.-P., & Li, Z. (2019). Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings. Nonlinearity, 32(2), 559–583.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, J., & Li, X. (2020). Collective synchronization of Kuramoto-oscillator networks. IEEE Circuits and Systems Magazine, 20(3), 46–67. https://doi.org/10.1109/MCAS.2020.3005485

    Article  Google Scholar 

  9. Dörfler, F., & Bullo, F. (2011). On the critical coupling for Kuramoto oscillators. SIAM Journal on Applied Dynamical Systems, 10(3), 1070–1099. https://doi.org/10.1137/10081530X

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi, Y.-P., Li, Z., Ha, S.-Y., Xue, X., & Yun, S.-B. (2014). Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow. Journal of Differential Equations, 257(7), 2591–2621. https://doi.org/10.1016/j.jde.2014.05.054

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu, L., Pota, H. R., & Petersen, I. R. (2019). Synchronization conditions for a multirate Kuramoto network with an arbitrary topology and nonidentical oscillators. IEEE Transactions on Cybernetics, 49(6), 2242–2254. https://doi.org/10.1109/TCYB.2018.2822809

    Article  Google Scholar 

  12. Zelazo, D., & Mesbahi, M. (2011). Edge agreement: Graph-theoretic performance bounds and passivity analysis. IEEE Transactions on Automatic Control, 56(3), 544–555. https://doi.org/10.1109/TAC.2010.2056730

    Article  MathSciNet  MATH  Google Scholar 

  13. Farhat, O., Abou Jaoude, D., & Hudoba de Badyn, M. (2021). H\(\infty \) network optimization for edge consensus. European Journal of Control, 62, 2–13. https://doi.org/10.1016/j.ejcon.2021.06.032

  14. Zelazo, D., & Bürger, M. (2017). On the robustness of uncertain consensus networks. IEEE Transactions on Control of Network Systems, 4(2), 170–178. https://doi.org/10.1109/TCNS.2015.2485458

  15. Zhu, L., & Hill, D.J. (2016). Transient stability analysis of microgrids with network-preserving structure. IFAC-PapersOnLine, 49(22), 339–344. (6th IFAC Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2016).

  16. Zhu, L., & Hill, D. J. (2020). Synchronization of Kuramoto oscillators: A regional stability framework. IEEE Transactions on Automatic Control, 65(12), 5070–5082.

    Article  MathSciNet  MATH  Google Scholar 

  17. Schaub, M.T., O’Clery, N., Billeh, Y.N., Delvenne, J.-C., Lambiotte, R., & Barahona, M. (2016). Graph partitions and cluster synchronization in networks of oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(9), 094821.

  18. Börgers, C., & Kopell, N. (2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation, 15(3), 509–538. https://doi.org/10.1162/089976603321192059

    Article  MATH  Google Scholar 

  19. Ding, T., Bo, R., Yang, Y., & Blaabjerg, F. (2019). Impact of negative reactance on definiteness of b-matrix and feasibility of dc power flow. IEEE Transactions on Smart Grid, 10(2), 1725–1734. https://doi.org/10.1109/TSG.2017.2777009

    Article  Google Scholar 

  20. Song, Y., Hill, D.J., Liu, T. (2015). Small-disturbance angle stability analysis of microgrids: A graph theory viewpoint. In: 2015 IEEE Conference on Control Applications (CCA), pp. 201–206. https://doi.org/10.1109/CCA.2015.7320633

  21. Khalil, H.K., & Grizzle, J. (1996). Nonlinear systems. Prentice Hall, New Jersey.

  22. Chiang, H.-D. (2010). Direct methods for stability analysis of electric power systems. Wiley-Blackwell. https://doi.org/10.1002/9780470872130

  23. Horn, R.A., & Johnson, C.R. (2012). Matrix analysis, 2nd edn. Cambridge University Press. https://doi.org/10.1017/9781139020411

  24. Restrepo, E., Loría, A., Sarras, I., & Marzat, J. (2021). Edge-based strict lyapunov functions for consensus with connectivity preservation over directed graphs. Automatica, 132, 109812.

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, W., Wang, D., Liu, J., Chen, Y., Khong, S.Z., Başar, T., Johansson, K.H., & Qiu, L. (2021). On spectral properties of signed Laplacians with connections to eventual positivity. IEEE Transactions on Automatic Control, 66(5), 2177–2190. https://doi.org/10.1109/TAC.2020.3008300

  26. Altafini, C. (2012). Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control, 58(4), 935–946.

    Article  MathSciNet  MATH  Google Scholar 

  27. Du, M., Ma, B., & Meng, D. (2018). Edge convergence problems on signed networks. IEEE Transactions on Cybernetics, 49(11), 4029–4041.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Prof. Parvaiz Ahmad Naik, Dr and Muhammad Faizan Tahir for their constructive comments that improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuming Zhong.

Additional information

This work was partly supported by the Hainan Provincial Natural Science Foundation of China (422RC667).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhong, J. & Chen, H. Synchronization of second-order Kuramoto networks from the perspective of edge dynamics. Control Theory Technol. 21, 580–590 (2023). https://doi.org/10.1007/s11768-023-00146-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00146-x

Keywords

Navigation