Skip to main content
Log in

Algebraic form and analysis of SIR epidemic dynamics over probabilistic dynamic networks

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

The outbreak of corona virus disease 2019 has profoundly affected people’s way of life. It is increasingly necessary to investigate epidemics over social networks. This paper studies susceptible-infected-removed (SIR) epidemics via the semi-tensor product. First, a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks (SIRED-PDN) is given. Based on an evolutionary rule, the algebraic form for the dynamics of individual states and network topologies is given, respectively. Second, the SIRED-PDN can be described by a probabilistic mix-valued logical network. After providing an algorithm, all possible final spreading equilibria can be obtained for any given initial epidemic state and network topology by seeking attractors of the network. And the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by seeking the transient time of the network. Finally, an illustrative example is given to show the effectiveness of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1

Similar content being viewed by others

References

  1. Cai, C., Wu, Z., Chen, M. Z., Holme, P., & Guan, J. (2016). Solving the dynamic correlation problem of the susceptible-infected-susceptible model on networks. Physical Review Letters, 116(25), 258301. https://doi.org/10.1103/PhysRevLett.116.258301

    Article  Google Scholar 

  2. Harko, T., Lobo, F. S., & Mak, M. (2014). Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Applied Mathematics and Computation, 236, 184–194. https://doi.org/10.1016/j.amc.2014.03.030

    Article  MathSciNet  MATH  Google Scholar 

  3. Shaw, L. B., & Schwartz, I. B. (2008). Fluctuating epidemics on adaptive networks. Physical Review E, 77(6), 066101. https://doi.org/10.1103/PhysRevE.77.066101

    Article  MathSciNet  Google Scholar 

  4. Gross, T., & D’ Lima, C. J. D., & Blasius, B. (2006). Epidemic dynamics on an adaptive network. Physical Review Letters, 96(20), 208701. https://doi.org/10.1103/PhysRevLett.96.208701

  5. Song, Y., & Jiang, G. (2009). Model and dynamic behavior of malware propagation over wireless sensor networks. International Conference on Complex Sciences, pp. 487–502. Shanghai, China. https://doi.org/10.1007/978-3-642-02466-5_47

  6. Gross, T., & Blasius, B. (2008). Adaptive coevolutionary networks: a review. Journal of the Royal Society Interface, 5(20), 259–271. https://doi.org/10.1098/rsif.2007.1229

    Article  Google Scholar 

  7. Cheng, D., Qi, H., & Li, Z. (2010). Analysis and control of Boolean networks: A semi-tensor product approach. Springer.

  8. Zhang, Z., Xia, C., Fu, J., & Chen, Z. (2022). Initial-state observability of mealy-based finite-state machine with nondeterministic output functions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(10), 6396–6405. https://doi.org/10.1109/Tsmc.2022.3145449

  9. Zhou, Y., Chen, Z., Zhang, Z., Ni, Y., & Liu, Z. (2022). A state space approach to decentralized fault SE-coprognosability of partially observed discrete event systems. IEEE Transactions on Cybernetics, 53(3), 2028–2033. https://doi.org/10.1109/TCYB.2022.3165216

  10. Abolpour, R., Raji, M., & Moradi, P. (2021). Dynamic output feedback stabilization of deterministic finite automata via the semi-tensor product of matrices approach. Control Theory and Technology, 19(2), 170–182. https://doi.org/10.1007/s11768-020-00026-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, D., Wu, Y., Zhao, G., & Fu, S. (2021). A comprehensive survey on STP approach to finite games. Journal of Systems Science and Complexity, 34(5), 1666–1680. https://doi.org/10.1007/s11424-021-1232-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C., Xing, Y., He, F., & Cheng, D. (2020). A strategic learning algorithm for state-based games. Automatica, 113, 108615. https://doi.org/10.1016/j.automatica.2019.108615

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, Y., Le, S., Zhang, K., & Sun, X. M. (2021). Ex-ante agent transformation of Bayesian games. IEEE Transactions on Automatic Control, 67(11), 5793–5808. https://doi.org/10.1109/Tac.2021.3122372

  14. Yuan, H., Chen, Z., Zhang, Z., Zhu, R., & Liu, Z. (2022). Modeling and optimization control of networked evolutionary games with heterogeneous memories and switched topologies. Knowledge-Based Systems, 252, 109378. https://doi.org/10.1016/j.knosys.2022.109378

    Article  Google Scholar 

  15. Zhu, R., Chen, Z., Zhang, J., & Liu, Z. (2022). Strategy optimization of weighted networked evolutionary games with switched topologies and threshold. Knowledge-Based Systems, 235, 107644. https://doi.org/10.1016/j.knosys.2021.107644

    Article  Google Scholar 

  16. Yuan, H., & Chen, Z. (2022). Modeling and analysis of a class of networked evolutionary games with finite memories via semi-tensor product method. 2022 41th Chinese Control Conference (CCC), pp. 6858–6863. Hefei, China. https://doi.org/10.23919/CCC55666.2022.9902855

  17. Feng, J., Yao, J., & Cui, P. (2013). Singular Boolean networks: Semi-tensor product approach. Science China Information Sciences, 56(11), 1–14. https://doi.org/10.1007/s11432-012-4666-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H., Liu, Y., Wang, S., & Niu, B. (2021). State feedback stabilization of large-scale logical control networks via network aggregation. IEEE Transactions on Automatic Control, 66(12), 6033–6040. https://doi.org/10.1109/Tac.2021.3057139

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, D., Liu, Z., & Qi, H. (2020). Completeness and normal form of multi-valued logical functions. Journal of the Franklin Institute, 357(14), 9871–9884. https://doi.org/10.1016/j.jfranklin.2020.06.026

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, J., Li, B., & Zhong, J. (2021). A novel synthesis method for reliable feedback shift registers via Boolean networks. Science China Information Sciences, 64(5), 1–14. https://doi.org/10.1007/s11432-020-2981-4

    Article  MathSciNet  Google Scholar 

  21. Liu, Y., Zhong, J., Ho, D. W., & Gui, W. (2022). Minimal observability of Boolean networks. Science China Information Sciences, 65(5), 1–12. https://doi.org/10.1016/j.sysconle.2022.105204

    Article  MathSciNet  Google Scholar 

  22. Fu, S., Wang, Y., Cheng, D., & Liu, J. (2017). Morgan’s problem of Boolean control networks. Control Theory Technology, 15, 316–326. https://doi.org/10.1007/s11768-017-7068-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, J., Li, Y., Fu, S., & Lyu, H. (2022). New method for disturbance decoupling of Boolean networks. IEEE Transactions on Automatic Control, 67(9), 4794–4800. https://doi.org/10.1109/TAC.2022.3161609

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Feng, J., & Wang, B. (2022). Output feedback observability of switched Boolean control networks. Information Sciences, 612, 612–625. https://doi.org/10.1016/j.ins.2022.08.116

    Article  Google Scholar 

  25. Du, L., Zhang, Z., & Xia, C. (2023). A state-flipped approach to complete synchronization of Boolean networks. Applied Mathematics and Computation, 443, 127788. https://doi.org/10.1016/j.amc.2022.127788

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, P., & Wang, Y. (2016). Matrix expression and vaccination control for epidemic dynamics over dynamic networks. Control Theory and Technology, 14(1), 39–48. https://doi.org/10.1007/s11768-016-5101-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, P., Wang, Y., & Li, H. (2015). Modeling and analysis of epidemic dynamics on an adaptive network. 2015 34th Chinese Control Conference (CCC), pp. 587–592. Hangzhou, China. https://doi.org/10.1109/ChiCC.2015.7259700

  28. Kabir, K. A., Kuga, K., & Tanimoto, J. (2019). Analysis of SIR epidemic model with information spreading of awareness. Chaos, Solitons and Fractals, 119, 118–125. https://doi.org/10.1016/j.chaos.2018.12.017

    Article  MathSciNet  MATH  Google Scholar 

  29. McCluskey, C. C. (2010). Complete global stability for an SIR epidemic model with delaydistributed or discrete. Nonlinear Analysis: Real World Applications, 11(1), 55–59. https://doi.org/10.1016/j.nonrwa.2008.10.014

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, Y., Lu, P., Chang, C., & Liu, T. (2020). A time-dependent SIR model for COVID-19 with undetectable infected persons. IEEE Transactions on Network Science and Engineering, 7(4), 3279–3294. https://doi.org/10.1109/Tnse.2020.3024723

    Article  MathSciNet  Google Scholar 

  31. Lagorio, C., Dickison, M., Vazquez, F., Braunstein, L., Macri, P., Migueles, M., Havlin, S., & Stanley, H. (2011). Quarantine-generated phase transition in epidemic spreading. Physical Review E, 83(2), 026102. https://doi.org/10.1103/PhysRevE.83.026102

    Article  Google Scholar 

  32. Scanlon, H., & Gemmer, J. (2021). Epidemic conditions with temporary link deactivation on a network SIR disease model. Spora: A Journal of Biomathematics, 7(1), 72–85. https://doi.org/10.30707/SPORA7.1.1647885542.976088

  33. Lu, J., Li, H., Liu, Y., & Li, F. (2017). Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory and Applications, 11(13), 2040–2047. https://doi.org/10.1049/iet-cta.2016.1659

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxin Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of financial or non-financial interests that are directly or indirectly related to the publication of this paper.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 61973175, 62203328), the Tianjin Natural Science Foundation (Nos. 20JCYBJC01060, 21JCQNJC00840) and the General Terminal IC Interdisciplinary Science Center of Nankai University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Chen, Z., Zhang, Z. et al. Algebraic form and analysis of SIR epidemic dynamics over probabilistic dynamic networks. Control Theory Technol. 21, 602–611 (2023). https://doi.org/10.1007/s11768-023-00143-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00143-0

Keywords

Navigation