Control Theory and Technology

, Volume 16, Issue 2, pp 110–121 | Cite as

Consensus controller for multi-UAV navigation

  • Patrik Kolaric
  • Ci Chen
  • Ankur Dalal
  • Frank L. Lewis
Article
  • 31 Downloads

Abstract

In this paper, we design consensus algorithms for multiple unmanned aerial vehicles (UAV). We mainly focus on the control design in the face of measurement noise and propose a position consensus controller based on the sliding mode control by using the distributed UAV information. Within the framework of Lyapunov theory, it is shown that all signals in the closed-loop multi- UAV systems are stabilized by the proposed algorithm, while consensus errors are uniformly ultimately bounded. Moreover, for each local UAV, we propose a mechanism to define the trustworthiness, based on which the edge weights are tuned to eliminate negative influence from stubborn agents or agents exposed to extremely noisy measurement. Finally, we develop software for a nano UAV platform, based on which we implement our algorithms to address measurement noises in UAV flight tests. The experimental results validate the effectiveness of the proposed algorithms.

Keywords

Consensus control multi-agent system quadrotor Lyapunov stability distributed system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U.S. Air Force Research Laboratories. UAV Cooperative Decision and Control; Challenges and Practical Approaches. T. Shima, S. Rasmussen (eds.). Philadelphia: SIAM. 2009.Google Scholar
  2. [2]
    R. M. Murray. Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems Measurement and Control–Transactions of the ASME, 2007, 129(5): 571–583.CrossRefGoogle Scholar
  3. [3]
    Z. Qu. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. London: Springer, 2009.MATHGoogle Scholar
  4. [4]
    A. Das, K. Subbarao, F. L. Lewis. Dynamic inversion with zerodynamics stabilisation for quadrotor control. IET Control Theory & Applications, 2009, 3(3): 303–314.MathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Das, F. L. Lewis, S. Subbarao. Backstepping approach for controlling a quadrotor using neural network. Journal of Intelligent and Robotics Systems, 2009, 56(1): 127–151.CrossRefMATHGoogle Scholar
  6. [6]
    F. L. Lewis, S. Jagannathan, A. Yesildirak. Neural Network Control of Robot Manipulators and Non-linear Systems. Boca Raton: CRC Press, 1998.Google Scholar
  7. [7]
    P. Wang, Z. Man, Z. Cao. Dynamics modelling and linear control of quadcopter. International Conference on Advanced Mechatronic Systems, Melbourne: IEEE, 2016: 498–503.Google Scholar
  8. [8]
    G. V. Raffo, M. G. Ortega, F. R. Rubio. An integral predictive/nonlinear H8 control structure for a quadrotor helicopter. Automatica, 2010, 46(1): 29–39.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    F. L. Lewis, H. Zhang, K. Hengster-Movric, et al. Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches. London: Springer, 2013.MATHGoogle Scholar
  10. [10]
    R. Olfati-Saber, J. A. Fax, R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215–233.CrossRefMATHGoogle Scholar
  11. [11]
    W. Ren, R. W. Beard, E. M. Atkins. Information consensus in multivehicle cooperative control. IEEE Control Systems, 2007, 27(2): 71–82.CrossRefGoogle Scholar
  12. [12]
    Randal W. Beard, Timothy W. McLain. Small Unmanned Aircraft: Theory and Practice. Princeton: Princeton University Press, 2012.CrossRefGoogle Scholar
  13. [13]
    S. Khoo, L. Xie, Z. Man. Robust finite-time consensus tracking algorithm for multirobot systems. IEEE Transactions on Mechatronics, 2009, 14(2): 219–228.CrossRefGoogle Scholar
  14. [14]
    X. Xu, L. Liu, G. Feng. Consensus of single integrator multiagent systems with directed topology and communication delays. Control Theory and Technology, 2016, 14(1): 21–27.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Y. Kuriki, T. Namerikawa. Consensus-based cooperative formation control with collision avoidance for a multi-UAV system. American Control Conference, Portland: IEEE, 2014: 2077–2082.Google Scholar
  16. [16]
    M. Yan, X. Zhu, X. Zhang, et al. Consensus-based threedimensional multi-UAV formation control strategy with high precision. Frontiers of Information Technology & Electronic Engineering, 2017, 18(7): 968–977.CrossRefGoogle Scholar
  17. [17]
    J. Wang, X. Nian, H. Wang. Consensus and formation control of discrete-time multi-agent systems. Journal of Central South University of Technology, 2011, 18(4): 1161–1168.CrossRefGoogle Scholar
  18. [18]
    A. Das, F. L. Lewis. Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. International Journal of Robust and Nonlinear Control, 2011, 21(13): 1509–1524.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J. Thunberg, W. Song, Y. Hong, et al. Distributed attitude synchronization using backstepping and sliding mode control. Control Theory and Technology, 2014, 12(1): 48–55.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    H. Zhang, F. L. Lewis, A. Das. Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Transactions on Automatic Control, 2011, 56(8): 1948–1952.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    D. Vrabie, F. L. Lewis. Adaptive dynamic programming for online solution of a zero-sum differential game. Journal of Control Theory and Applications, 2011, 9(3): 353–360.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    K. G. Vamvoudakis, F. L. Lewis. Multi-player non-zero-sum games: Online adaptive learning solution of coupled Hamilton- Jacobi equations. Automatica, 2011, 47(8): 1556–1569.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    K. G. Vamvoudakis, F. L. Lewis. Online solution of nonlinear two-player zero-sum games using synchronous policy iteration. International Journal of Robust and Nonlinear Control, 2012, 22(13): 1460–1483.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    T. Yucelen, W. M. Haddad, E. M. Feron. Adaptive control architectures for mitigating sensor attacks in cyber-physical systems. American Control Conference, Boston: IEEE, 2016: 1165–1170.Google Scholar
  25. [25]
    E. Arabi, T. Yucelen, W. M. Haddad. Mitigating the effects of sensor uncertainties in networked multiagent systems. American Control Conference, Boston: IEEE, 2016: 5545–5550.Google Scholar
  26. [26]
    J. S. Baras, T. Jiang. Trust evaluation in anarchy: a case study on autonomous networks. Proceedings of IEEE INFOCOM, Barcelona: IEEE, 2006: 835–846.Google Scholar
  27. [27]
    J. S. Baras, T. Jiang. Cooperation, trust and games in wireless networks. Symposium on Systems, Control, and Networks, Berkeley: Birkhauser, 2005: 183–202.Google Scholar
  28. [28]
    T. Jiang, J. S. Baras. Graph Algebraic Interpretation of Trust Establishment in Autonomic Networks. Maryland: University of Maryland, 2010.Google Scholar
  29. [29]
    Y. Kuriki, T. Namerikawa. Formation control of UAVs with a fourth-order flight dynamics. The 52nd IEEE Conference on Decision and Control, Florence: IEEE, 2013: 6706–6711.CrossRefGoogle Scholar
  30. [30]
    J.-J. E. Slotine, W. Li. Applied Nonlinear Control. Englewood Cliffs: Prentice Hall, 1991.MATHGoogle Scholar
  31. [31]
    Z. Qu. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. New York: Springer, 2009.MATHGoogle Scholar
  32. [32]

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Patrik Kolaric
    • 1
  • Ci Chen
    • 1
    • 2
  • Ankur Dalal
    • 1
  • Frank L. Lewis
    • 1
    • 3
  1. 1.UTA Research InstituteUniversity of Texas at ArlingtonFort WorthU.S.A.
  2. 2.School of AutomationGuangdong University of Technology, Guangdong Key Laboratory of IoT Information TechnologyGuangzhou GuangzhouChina
  3. 3.State Key Laboratory of Synthetical Automation for Process IndustriesNortheastern UniversityShenyang LiaoningChina

Personalised recommendations