Skip to main content
Log in

Time averaged consensus in a direct coupled coherent quantum observer network

  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper considers the problem of constructing a direct coupling quantum observer for a closed linear quantum system. The proposed distributed observer consists of a network of quantum harmonic oscillators and it is shown that the observer network converges to a consensus in a time averaged sense in which each element of the observer estimates the specified output of the quantum plant. An example and simulations are included to illustrate the properties of the observer network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Miao, M. R. James, I. R. Petersen. Coherent observers for linear quantum stochastic systems. Automatica, 2016, 71: 264–271.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Vladimirov, I. R. Petersen. Coherent quantum filtering for physically realizable linear quantum plants. Proceedings of the European Control Conference, Zurich, Switzerland: IEEE, 2013: 2717–2723.

    Google Scholar 

  3. Z. Miao, L. A. D. Espinosa, I. R. Petersen, et al. Coherent quantum observers for n-level quantum systems. Proceedings of the Australian Control Conference, Perth, Australia: IEEE, 2013: 313–318.

    Google Scholar 

  4. I. G. Vladimirov, I. R. Petersen. Directly coupled observers for quantum harmonic oscillators with discounted mean square cost functionals and penalized back-action. Proceedings of the IEEE Conference on Norbert Wiener in the 21st Century, Melbourne, Australia: IEEE, 2016: 78–83.

    Google Scholar 

  5. M. R. James, H. I. Nurdin, I. R. Petersen. H control of linear quantum stochastic systems. IEEE Transactions on Automatic Control, 2008, 53(8): 1787–1803.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. I. Nurdin, M. R. James, I. R. Petersen. Coherent quantum LQG control. Automatica, 2009, 45(8): 1837–1846.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. J. Shaiju, I. R. Petersen. A frequency domain condition for the physical realizability of linear quantum systems. IEEE Transactions on Automatic Control, 2012, 57(8): 2033–2044.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. R. Petersen. Quantum linear systems theory. Open Automation and Control Systems Journal, 2016, 8: 67–93.

    Article  Google Scholar 

  9. C. Gardiner, P. Zoller. Quantum Noise. Berlin: Springer, 2000.

    Book  MATH  Google Scholar 

  10. H. Bachor, T. Ralph. A Guide to Experiments in Quantum Optics. 2nd ed. Weinheim, Germany: Wiley-VCH, 2004.

    Book  Google Scholar 

  11. A. I. Maalouf, I. R. Petersen. Bounded real properties for a class of linear complex quantum systems. IEEE Transactions on Automatic Control, 2011, 56(4): 786–801.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Mabuchi. Coherent-feedback quantum control with a dynamic compensator. Physical Review A, 2008, 78(3): DOI 10.1103/PhysRevA.78.032323.

  13. G. Zhang, M. James. Direct and indirect couplings in coherent feedback control of linear quantum systems. IEEE Transactions on Automatic Control, 2011, 56(7): 1535–1550.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. G. Vladimirov, I. R. Petersen. A quasi-separation principle and Newton-like scheme for coherent quantum LQG control. Systems & Control Letters, 2013, 62(7): 550–559.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Vladimirov, I. R. Petersen. A dynamic programming approach to finite-horizon coherent quantum LQG control. Proceedings of the Australian Control Conference, Melbourne, Australia: IEEE, 2011: 357–362.

    Google Scholar 

  16. R. Hamerly, H. Mabuchi. Advantages of coherent feedback for cooling quantum oscillators. Physical Review Letters, 2012, 109(17): DOI 10.1103/PhysRevLett.109.173602.

  17. N. Yamamoto. Coherent versus measurement feedback: Linear systems theory for quantum information. Physical Review X, 2014, 4(4): DOI 10.1103/PhysRevX.4.041029.

  18. C. Xiang, I. R. Petersen, D. Dong. Coherent robust H-infinity control of linear quantum systems with uncertainties in the Hamiltonian and coupling operators. Automatica, 2017, 81: 8–21.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Xiang, I. R. Petersen, D. Dong. Performance analysis and coherent guaranteed cost control for uncertain quantum systems using small gain and Popov methods. IEEE Transactions on Automatic Control, 2017, 62(3): 1524–1529.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. L. Vuglar, I. R. Petersen. Quantum noises, physical realizability and coherent quantum feedback control. IEEE Transactions on Automatic Control, 2017, 62(2): 998–1003.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. L. Lewis, H. Zhang, K. Hengser-Movric, et al. Cooperative Control of Multi-Agent Systems. London: Springer, 2014.

    Book  Google Scholar 

  22. G. Shi, K. H. Johansson. Robust consusus for continuous-time multi-agent dynamics. SIAM Journal on Control and Optimization, 2013, 51(5): 3673–3691.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Mesbahi, M. Egerstedt. Graph Theoretic Methods in Multiagent Networks. Princeton: Princeton University Press, 2010.

    Book  MATH  Google Scholar 

  24. L. Xiao, S. Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 2005, 53(1): 65–78.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Jadbabaie, J. Lin, A. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988–1001.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Olfati-Saber. Distributed Kalman filter with embedded consensus filters. Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain: IEEE, 2005: 8179–8184.

    Google Scholar 

  27. R. Olfati-Saber. Kalman-consensus filter: optimality, stability, and performance. Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai: IEEE, 2009: 7036–7042.

    Google Scholar 

  28. R. Sepulchre, A. Sarlette, P. Rouchon. Consensus in noncommutative spaces. Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta: IEEE, 2010: 6596–6601.

    Google Scholar 

  29. L. Mazzarella, A. Sarlette, F. Ticozzi. Consensus for quantum networks: symmetry from gossip interactions. IEEE Transactions on Automatic Control, 2015, 60(1): 158–172.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Mazzarella, F. Ticozzi, A. Sarlette. From consensus to robust randomized algorithms: a symmetrization approach. arXiv, 2013: arXiv:1311.3364 [quant-ph].

    MATH  Google Scholar 

  31. F. Ticozzi, L. Mazzarella, A. Sarlette. Symmetrization for quantum networks: a continuous-time approach. arXiv, 2014: arXiv:1403.3582 [quant-ph].

    MATH  Google Scholar 

  32. G. Shi, D. Dong, I. R. Petersen, et al. Consensus of quantum networks with continuous-time Markovian dynamics. Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang: IEEE, 2014: 307–312.

    Google Scholar 

  33. I. R. Petersen. A direct coupling coherent quantum observer. IEEE Conference on Control Applications, Nice, France, 2014: 1960–1963.

    Google Scholar 

  34. I. R. Petersen. Time averaged consensus in a direct coupled distributed coherent quantum observer. Proceedings of the American Control Conference, Chicago: IEEE, 2015: 80–85.

    Google Scholar 

  35. I. R. Petersen. Time averaged consensus in a direct coupled coherent quantum observer network for a single qubit finite level quantum system. Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia: IEEE, 2015: DOI 10.1109/ASCC.2015.7244397.

    Google Scholar 

  36. I. R. Petersen. A direct coupling coherent quantum observer for a single qubit finite level quantum system. Proceedings of the 4th Australian Control Conference, Canberra, Australia: IEEE, 2014: 72–76.

    Google Scholar 

  37. I. R. Petersen, E. H. Huntington. A possible implementation of a direct coupling coherent quantum observer. Proceedings of the 5th Australian Control Conference, Gold Coast, Australia: IEEE, 2015: 105–107.

    Google Scholar 

  38. I. R. Petersen, E. H. Huntington. Implementation of a direct coupling coherent quantum observer including observer measurements. Proceedings of the American Control Conference, Boston: IEEE, 2016: 4765–4768.

    Google Scholar 

  39. I. R. Petersen, E. H. Huntington. A reduced order direct coupling coherent quantum observer for a complex quantum plant. Proceedings of the European Control Conference, Aalborg, Denmark: IEEE, 2016: 1430–1433.

    Google Scholar 

  40. I. R. Petersen, E. H. Huntington. Implementation of a distributed coherent quantum observer. arXiv, 2017: arXiv:1702.06215 [quant-ph].

    Book  Google Scholar 

  41. J. Gough, M. R. James. The series product and its application to quantum feedforward and feedback networks. IEEE Transactions on Automatic Control, 2009, 54(11): 2530–2544.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Petersen.

Additional information

This work was supported by the Air Force Office of Scientific Research (AFOSR), under agreement number FA2386-16-1-4065. Some of the research presented in this paper was also supported by the Australian Research Council under grant FL110100020.

Ian R. PETERSEN was born in Victoria, Australia. He received a Ph.D in Electrical Engineering in 1984 from the University of Rochester. From 1983 to 1985 he was a Postdoctoral Fellow at the Australian National University. From 1985 until 2016 he was with UNSW Canberra where was most recently a Scientia Professor and an Australian Research Council Laureate Fellow in the School of Engineering and Information Technology. From 2017 he has been a Professor in the Research School of Engineering at the Australian National University. He has served as an Associate Editor for the IEEE Transactions on Automatic Control, Systems and Control Letters, Automatica, and SIAM Journal on Control and Optimization. Currently he is an Editor for Automatica and an Associate Editor for the IEEE Transactions on Control Systems Technology. He is a fellow of IFAC, the IEEE and the Australian Academy of Science. His main research interests are in robust control theory, quantum control theory and stochastic control theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, I.R. Time averaged consensus in a direct coupled coherent quantum observer network. Control Theory Technol. 15, 163–176 (2017). https://doi.org/10.1007/s11768-017-7019-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-017-7019-8

Keywords

Navigation