Advertisement

Control Theory and Technology

, Volume 15, Issue 2, pp 138–149 | Cite as

MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization

  • Bingtao Ren
  • Hong Chen
  • Haiyan Zhao
  • Wei Xu
Article

Abstract

In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in the MPC framework to track the torque demand and reduce energy loss, by directly optimizing the switch states of inverter. To fast determine the optimal control sequence in predictive process, a searching tree is built to look for optimal inputs by dynamic programming (DP) algorithm on the basis of the principle of optimality. Then we design a pruning method to check the candidate inputs that can enter the next predictive loop in order to decrease the computational burden of evaluation of input sequences. Finally, the simulation results on different conditions indicate that the proposed strategy can achieve a tradeoff between control performance and computational efficiency.

Keywords

Permanent magnet synchronous motor electric vehicle torque optimal control model predictive control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Gasbaoui, A. Nasri. A novel 4WD electric vehicle control strategy based on direct torque control space vector modulation technique. Nonlinear Engineering, 2012, 3: 236–242.Google Scholar
  2. [2]
    P. Liu, H. P. Liu. Permanent-magnet synchronous motor drive system for electric vehicles using bidirectional Z-source inverter. IET Electrical Systems in Transportation, 2012, 4(2): 178–185.CrossRefGoogle Scholar
  3. [3]
    C. H. T. Lee, K. T. Chau, C. H. Liu. Design and analysis of an electronic-geared magnetless machine for electric vehicles. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6705–6714.CrossRefGoogle Scholar
  4. [4]
    K. C. Kim. A novel calculation method on the current information of vector inverter for interior permanent magnet synchronous motor for electric vehicle. IEEE Transactions on Magnetics, 2014, 50(2): 829–832.CrossRefGoogle Scholar
  5. [5]
    D. Casadei, F. Profumo, G. Serra. FOC and DTC: two viable schemes for induction motors torque control. IEEE Transactions on Power Electronics, 2002, 17(5): 779–787.CrossRefGoogle Scholar
  6. [6]
    J. Rodriguez, P. Cortés. Predictive Control of Power Converters and Electrical Drives. Chichester: John Wiley & Sons,2012.CrossRefGoogle Scholar
  7. [7]
    T. Geyer, G. Papafortiou, M. Morari. Model predictive direct torque contro–Part I: Concept, algorithm, and analysis. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1894–1905.CrossRefGoogle Scholar
  8. [8]
    C. Bordons, C. Montero. Basic principles of MPC for power converters. IEEE Industrial Electronics Magazine, 2015, 9(3): 31–43.CrossRefGoogle Scholar
  9. [9]
    P. K. Manakos, T. Geyer, N. Oikonomou, et al. Direct model predictive control: A review of strategies that achieve long prediction intervals for power electronics. IEEE industrial Electronics Magazine, 2014, 8(1): 32–43.CrossRefGoogle Scholar
  10. [10]
    P. Cortés, M. P. Kazmierkowski, R. M. Kennel, et al. Predictive control in power electronics and drives. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4312–4324.CrossRefGoogle Scholar
  11. [11]
    F. Morel, X. F. Lin-Shi, J. M. Rétif, et al. A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2715–2728.CrossRefGoogle Scholar
  12. [12]
    M. Preindl, S. Bolognani. Model predictive direct torque control with finite control set for pmsm drive systems, part 1: Maximum torque per ampere operation. IEEE Transactions on Industrial Informatics, 2013, 9(4): 1912–1921.CrossRefGoogle Scholar
  13. [13]
    J. J. Hong, D. H. Pan, Z. J. Zong. Comparison of the two current predictive-control methods for a segment-winding permanentmagnetlinear synchronous motor. IEEE Transactions on Plasma Science, 2013, 41(5): 1167–1173.CrossRefGoogle Scholar
  14. [14]
    F. Barrero, J. Prieto, E. Levi, et al. An enhanced predictive current control method for asymmetrical six-phase motor drives. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3242–3252.CrossRefGoogle Scholar
  15. [15]
    S. Kouro, P. Coréts, R. Vargas, et al. Model predictive controla simple and powerful method to control power converters. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826–1838.CrossRefGoogle Scholar
  16. [16]
    G. Prior, M. Krstic. A control Lyapunovapproach to finite control set model predictive control for permanent magnet synchronous motors. ASME Journal of Dynamic Systems, Measurement, and Control, 2015, 137(1): 1–10.Google Scholar
  17. [17]
    M. J. Duran, J. Prieto, F. Barrero, et al. Predictive current control of dual three-phase drives using restrained search techques. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3253–3263.CrossRefGoogle Scholar
  18. [18]
    T. Geyer. Computationally efficient model predictive direct torque control. IEEE Transactions on Power Electronics, 2011, 26(10): 2804–2816.CrossRefGoogle Scholar
  19. [19]
    D. P. Bertsekas. Dynamic Programming and Optimal Control. 3rd ed. Nashua: Athena Scientific,2005.zbMATHGoogle Scholar
  20. [20]
    D. Graovac, M. Pürschel. IGBT Power Losses Calculation Using the Data-Sheet Parameters. 129th ed. Neubiberg: Infineon Technologies AG,2009.Google Scholar
  21. [21]
    H. Chen, F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 1998, 34(10): 1205–1217.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Chen. Model Predictive Control. 1st ed. System and Control Series. Beijing: Science Press,2013.Google Scholar
  23. [23]
    J. F. Stumper, A. Döltinger, R. Kennel. Classical model predictive control of a permanent magnet synchronous motor. EPE Journal, 2012, 22(3): 24–31.CrossRefGoogle Scholar
  24. [24]
    E. L. Lawler, D. E. Wood. Branch-and-bound methods: A survey. Operations Research, 1996, 14(4): 699–719.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Bingtao Ren
    • 1
    • 2
  • Hong Chen
    • 1
    • 2
  • Haiyan Zhao
    • 1
    • 2
  • Wei Xu
    • 2
  1. 1.State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun JilinChina
  2. 2.Department of Control Science and EngineeringJilin UniversityChangchun JilinChina

Personalised recommendations