Skip to main content
Log in

On engineering game theory with its application in power systems

  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Due to its capability of solving decision-making problems involving multiple entities and objectives, as well as complex action sequences, game theory has been a basic mathematical tool of economists, politicians, and sociologists for decades. It helps them understand how strategic interactions impact rational decisions of individual players in competitive and uncertain environment, if each player aims to get the best payoff. This situation is ubiquitous in engineering practices. This paper streamlines the foundations of engineering game theory, which uses concepts, theories and methodologies to guide the resolution of engineering design, operation, and control problems in a more canonical and systematic way. An overview of its application in smart grid technologies and power systems related topics is presented, and intriguing research directions are also envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Neumann, O. Morgenstern. Theory of Games and Economic Behavior. Princeton: Princeton University Press, 1944.

    MATH  Google Scholar 

  2. J. F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 1950, 36(1): 48–49.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. F. Nash. Non-cooperative games. Annals of Mathematics, 1951, 54(2): 286–295.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Smith, G. R. Price. The logic of animal conflict. Nature, 1973, 246: 15–18.

    Article  MATH  Google Scholar 

  5. J. M. Smith. Game theory and the evolution of behavior. Proceedings of the Royal Society of London–Series B: Biological Sciences, 1979, 205(1161): 475–488.

    Article  Google Scholar 

  6. J. M. Smith. Evolution and the Theory of Games. Cambridge: Cambridge University Press, 1982.

    Book  MATH  Google Scholar 

  7. X. Yang, B. Ye. Linear and Nonlinear H8 Control. Tabei: Chuan Hwa Publishing Ltd., 1997.

    Google Scholar 

  8. S. Mei, F. Liu, W. Wei. Foundations of Engineering Game Theory and its Applications in Power Systems (in Chinese). Beijing: Science Press, 2016.

    Google Scholar 

  9. N. Wiener. Cybernetics or Control and Communication in the Animal and the Machine. Cambridge: MIT Press, 1948.

    Google Scholar 

  10. H. S. Tsien. Engineering Cybernetics. New York: McGraw-Hill, 1954.

    Google Scholar 

  11. T. Basar, G. J. Olsder. Dynamic Noncooperative Game Theory. Philadelphia: SIAM, 1999.

    MATH  Google Scholar 

  12. S. A. Gabriel, A. J. Conejo, J. D. Fuller, et al. Complementarity Modeling in Energy Markets. New York: Springer, 2013.

    Book  MATH  Google Scholar 

  13. D. B. Gillies. Solutions to general non-zero-sum games. A. W. Tucker & H. W. Kuhn (Eds.). Contributions to the Theory of Games. Annals of Mathematical Studies 40. Princeton: Princeton University Press: 47–85.

  14. L. S. Shapley, M. Shubik. Quasi-cores in a monetary economy with nonconvex preferences. Econometrica: Journal of the Econometric Society, 1966, 34(4): 805–827.

    Article  MATH  Google Scholar 

  15. L. S. Shapley. A value for n-person games. H. W. Kuhn & A. W. Tucker (Eds.). Contributions to the Theory of Games. Annals of Mathematical Studies 28. Princeton: Princeton University Press: 307–317.

  16. D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics, 1969, 17(6): 1163–1170.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. F. Nash. The bargaining problem. Econometrica: Journal of the Econometric Society, 1950, 18(2): 155–162.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. F. Nash. Two person cooperative games. Econometrica: Journal of the Econometric Society, 1953, 21(1): 128–140.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Smith. Evolutionary Genetics. New York: Oxford University Press, 1989.

    Google Scholar 

  20. A. Ben-Tal, A. Nemirovski. Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 2000, 88(3): 411–424.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Isaacs. Differential Games. Hoboken: Wiley, 1967.

    MATH  Google Scholar 

  22. T. Basar, P. Bernhard. H8 Optimal Control and Related Minimax Design Problems. Boston: Birkhauser, 2008.

    Book  MATH  Google Scholar 

  23. H. von Stackelberg. Marktform und Gleichgewicht. Berlin: Springer, 1934. The Theory of the Market Economy (English translated). Oxford: Oxford University Press, 1952.

    Google Scholar 

  24. J. Bracken, J. McGill. Mathematical programs with optimization problems in the constraints. Operations Research, 1973, 21(1): 37–44.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Dempe, V. Kalashnikov, G. A. Perez-Valdes, et al. Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Networks. Berlin: Springer, 2015.

    Book  MATH  Google Scholar 

  26. J. S. Pang, M. Fukushima. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Computational Management Science, 2005, 2(1): 21–56.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. L. Su. Equilibrium Problems with Equilibrium Constraints: Stationarities, Algorithms, and Applications. Stanford: Stanford University, 2005.

    Google Scholar 

  28. W. Saad, Z. Han, H. V. Poor, et al. Game-theoretic methods for the smart grid: An overview of microgrid systems, demandside management, and smart grid communications. IEEE Signal Processing Magazine, 2012, 29(5): 86–105.

    Article  Google Scholar 

  29. N. Singh, X. Vives. Price and quantity competition in a differentiated duopoly. Rand Journal of Economics, 1984, 15(4): 546–554.

    Article  Google Scholar 

  30. B. F. Hobbs, C. B. Metzler, J. S. Pang. Strategic gaming analysis for electric power systems: An MPEC approach. IEEE Transactions on Power Systems, 2000, 15(2): 638–645.

    Article  Google Scholar 

  31. X. Hu, D. Ralph. Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations Research, 2007, 55(5): 809–827.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Banaei, M. O. Buygi, H. Zareipour. Impacts of strategic bidding of wind power producers on electricity markets. IEEE Transactions on Power Systems, 2016, 31(6): 4544–4553.

    Article  Google Scholar 

  33. S. J. Kazempour, H. Zareipour. Equilibria in an oligopolistic market with wind power production. IEEE Transactions on Power Systems, 2014, 29(2): 686–697.

    Article  Google Scholar 

  34. T. Dai, W. Qiao. Optimal bidding strategy of a strategic wind power producer in the short-term market. IEEE Transactions on Sustainable Energy, 2015, 6(3): 707–719.

    Article  Google Scholar 

  35. E. G. Kardakos, C. K. Simoglou, A. G. Bakirtzis. Optimal offering strategy of a virtual power plant: A stochastic bi-level approach. IEEE Transactions on Smart Grid, 2016, 7(2): 794–806.

    Google Scholar 

  36. A. S. Chuang, F. Wu, P. Varaiya. A game-theoretic model for generation expansion planning: Problem formulation and numerical comparisons. IEEE Transactions on Power Systems, 2001, 16(4): 885–891.

    Article  Google Scholar 

  37. N. I. Voropai, E. Ivanova. Shapley game for expansion planning of generating companies at many non-coincident criteria. IEEE Transactions on Power Systems, 2006, 21(4): 1630–1637.

    Article  Google Scholar 

  38. J. Wang, M. Shahidehpour, Z. Li, et al. Strategic generation capacity expansion planning with incomplete information. IEEE Transactions on Power Systems, 2009, 24(2): 1002–1010.

    Article  Google Scholar 

  39. M. Jenabi, G. Fatemi, Y. Smeers. Bi-level game approaches for coordination of generation and transmission expansion planning within a market environment. IEEE Transactions on Power Systems, 2013, 28(3): 2639–2650.

    Article  Google Scholar 

  40. S. Mei, Y. Wang, F. Liu, et al. Game approaches for hybrid power system planning. IEEE Transactions on Sustainable Energy, 2012, 3(3): 506–517.

    Article  Google Scholar 

  41. Y. Wang, S. Mei, F. Liu. Imputation schemes for the cooperative game in the hybrid power system planning. Journal of Systems Science and Complexity, 2012, 32(4): 418–428 (in Chinese).

    MATH  Google Scholar 

  42. S. Mei, D. Zhang, Y. Wang, et al. Robust optimization of static reserve planning with large-scale integration of wind power: A game theoretic approach. IEEE Transactions on Sustainable Energy, 2014, 5(2): 535–545.

    Article  Google Scholar 

  43. S. Mei, W. Guo, Y. Wang, et al. A game model for robust optimization of power systems and its application. Proceedings of the CSEE, 2013, 33(19): 47–56 (in Chinese).

    Google Scholar 

  44. R. Jiang, J. Wang, Y. Guan. Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems, 2012, 27(2): 800–810.

    Article  Google Scholar 

  45. L. Zhao, B. Zeng. Robust unit commitment problem with demand response and wind energy. IEEE Power and Energy Society General Meeting. San Diego: IEEE, 2012: DOI 10.1109/PESGM.2012.6344860.

    Google Scholar 

  46. D. Bertsimas, E. Litvinov, X. A. Sun, et al. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Transactions on Power Systems, 2013, 28(1): 52–63.

    Article  Google Scholar 

  47. W. Wei. Power System Robust Dispatch: Models and Applications. Beijing: Tsinghua University, 2013 (in Chinese).

    Google Scholar 

  48. W. Wei, F. Liu, S. Mei, et al. Robust energy and reserve dispatch under variable renewable generation. IEEE Transactions on Smart Grid, 2015, 6(1): 369–380.

    Article  Google Scholar 

  49. B. Zeng, L. Zhao. Solving two-stage robust optimization problems using a column-and-constraint generation method. Operations Research Letters, 2013, 41(5): 457–461.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. E. Falk. A linear maxmin problem. Mathematical Programming, 1973, 5(1): 169–188.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Zugno, A. J. Conejo. A robust optimization approach to energy and reserve dispatch in electricity markets. European Journal of Operational Research, 2015, 247(2): 659–671.

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Konno. A cutting plane algorithm for solving bilinear programs. Mathematical Programming, 1976, 11(1): 14–27.

    Article  MathSciNet  MATH  Google Scholar 

  53. W. Wei, F. Liu, S. Mei. Nash bargain and complementarity approach based environmental/economic dispatch. IEEE Transactions on Power Systems, 2015, 30(3): 1548–1549.

    Article  Google Scholar 

  54. W. Wei, J. Wang, S. Mei. Convexification of the Nash bargain based environmental-economic dispatch. IEEE Transactions on Power Systems, 2016, 31(6): 5208–5209.

    Article  Google Scholar 

  55. W. Wei, F. Liu, J. Wang, et al. Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants. Applied Energy, 2016, 183: 674–684.

    Article  Google Scholar 

  56. Q. Lu, S. Mei, W. Hu, et al. Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multimachine power systems. IEEE Transactions on Power Systems, 2001, 16(4): 729–736.

    Article  Google Scholar 

  57. Q. Lu, S. Mei, W. Hu, et al. Decentralised nonlinearH8excitation control based on regulation linearization. IEE Proceedings Generation, Transmission and Distribution, 2000, 147(4): 245–251.

    Article  Google Scholar 

  58. Q. Lu, S. Zheng, S. Mei, et al. NR-PSS (nonlinear robust power system stabilizer) for large synchronous generators and its large disturbance experiments on real time digital simulator. Science in China Series E: Technological Sciences, 2008, 51(4): 337–352.

    Article  MATH  Google Scholar 

  59. S. Mei, W. Wei, S. Zheng, et al. Development of an industrial non-linear robust power system stabiliser and its improved frequency-domain testing method. IET Generation, Transmission and Distribution, 2011, 5(12): 1201–1210.

    Article  Google Scholar 

  60. W. Guo, F. Liu, J. Si, et al. Online supplementary ADP learning controller design and application to power system frequency control with large-scale wind energy integration. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(8): 1748–1761

    Article  MathSciNet  Google Scholar 

  61. W. Guo, F. Liu, J. Si, et al. Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability. Neurocomputing, 2015, 170: 417–427.

    Article  Google Scholar 

  62. W. W. Weaver, P. T. Krein. Game-theoretic control of small-scale power systems. IEEE Transactions Power Delivery, 2009, 24(3): 1560–1567.

    Article  Google Scholar 

  63. N. C. Ekneligoda, W. W. Weaver. Game-theoretic cold-start transient optimization in DC microgrids. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6681–6690.

    Article  Google Scholar 

  64. H. Chen, R. Ye, X. Wang, et al. Cooperative control of power system load and frequency by using differential games. IEEE Transactions on Control Systems Technology, 2015, 23(3): 882–897.

    Article  Google Scholar 

  65. J. Kim, J. Jeon, S. Kim, et al. Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation. IEEE Transactions on Power Electronics, 2010, 25(12): 3037–3048.

    Article  Google Scholar 

  66. Z. Wang, B. Chen, J. Wang, et al. Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid, 2015, 6(1): 45–53.

    Article  Google Scholar 

  67. Z. Wang, B. Chen, J. Wang. Decentralized energy management system for networked microgrids in grid-connected and islanded modes. IEEE Transactions on Smart Grid, 2016, 7(2): 1097–1105.

    Article  Google Scholar 

  68. Q. Wang, C. Zhang, J. Wang, et al. Real-time trading strategies of proactive DISCO with heterogeneous DG owners. IEEE Transactions on Smart Grid:: DOI 10.1109/TSG.2016.2597263.

  69. W. Wei, F. Liu, S. Mei. Dispatchable region of the variable wind generation. IEEE Transactions on Power Systems, 2015, 30(5): 2755–2765.

    Article  Google Scholar 

  70. W. Wei, F. Liu, S. Mei. Real-time dispatchability of bulk power systems with volatile renewable generations. IEEE Transactions on Sustainable Energy, 2015, 6(3): 738–747.

    Article  Google Scholar 

  71. Y. Zhang, N. Gatsis, G. Giannakis. Robust energy management for microgrids with high-penetration renewables. IEEE Transactions on Sustainable Energy, 2013, 4(4): 944–953.

    Article  Google Scholar 

  72. T. Ding, S. Liu, W. Yuan, et al. A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks. IEEE Transactions on Sustainable Energy, 2016, 7(1): 301–311.

    Article  MathSciNet  Google Scholar 

  73. G. Asimakopoulou, A. Dimeas, N. Hatziargyriou. Leader-follower strategies for energy management of multi-microgrids. IEEE Transactions on Smart Grid, 2013, 4(4): 1909–1916.

    Article  Google Scholar 

  74. W. Wei, F. Liu, S. Mei. Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty. IEEE Transactions on Smart Grid, 2015, 6(3): 1364–1374.

    Article  Google Scholar 

  75. S. Mei, W. Wei. Hierarchal game and its applications in the smart grid. Journal of Systems Science and Mathematical Sciences, 2014, 34(11): 1331–1344 (in Chinese).

    MathSciNet  MATH  Google Scholar 

  76. J. Lee, J. Guo, J. Choi, et al. Distributed energy trading in microgrids: A game-theoretic model and its equilibrium analysis. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3524–3533.

    Google Scholar 

  77. N. C. Ekneligoda, W. W. Weaver. Game-theoretic communication structures in microgrids. IEEE Transactions on Smart Grid, 2015, 6(2): 1064–1072.

    Article  Google Scholar 

  78. P. Chen, S. Cheng, K. Chen. Smart attacks in smart grid communication networks. IEEE Communications Magazine, 2012, 50(8): 24–29.

    Article  Google Scholar 

  79. S. Backhaus, R. Bent, J. Bono, et al. Cyber-physical security: A game theory model of humans interacting over control systems. IEEE Transactions on Smart Grid, 2013, 4(4): 2320–2327.

    Article  Google Scholar 

  80. M. Zugno, J. M. Morales, P. Pinson, et al. A bilevel model for electricity retailers’ participation in a demand response market environment. Energy Economics, 2013, 36: 182–197.

    Article  Google Scholar 

  81. J. M. Lopez-Lezama, A. Padilha-Feltrin, J. Contreras, et al. Optimal contract pricing of distributed generation in distribution networks. IEEE Transactions on Power Systems, 2011, 26(1): 128–136.

    Article  Google Scholar 

  82. P. Yang, G. Tang, A. Nehorai. A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Transactions on Power Systems, 2013, 28(2): 884–892.

    Article  Google Scholar 

  83. J. S. Vardakas, N. Zorba, C. V. Verikoukis. A survey on demand response programs in smart grids: pricing methods and optimization algorithms. IEEE Communications Surveys & Tutorials, 2015, 17(1): 152–178.

    Article  Google Scholar 

  84. H. Mohsenian-Rad, V. Wong, J. Jatskevich, et al. Autonomous demand side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Transactions on Smart Grid, 2010, 1(3): 320–331.

    Article  Google Scholar 

  85. I. Atzeni, L. G. Ordonez, G. Scutari, et al. Noncooperative day-ahead bidding strategies for demand-side expected cost minimization with real-time adjustments: A GNEP approach. IEEE transactions on Signal Processing, 2014, 62(9): 2397–2412.

    Article  MathSciNet  Google Scholar 

  86. S. Maharjan, Q. Zhu, Y. Zhang, et al. Dependable demand response management in the smart grid: A Stackelberg game approach. IEEE Transactions on Smart Grid, 2013, 4(1): 120–132.

    Article  Google Scholar 

  87. A. J. Holmgren, E. Jenelius, J. Westin. Evaluating strategies for defending electric power networks against antagonistic attacks. IEEE Transactions on Power Systems, 2007, 22(1): 76–84.

    Article  Google Scholar 

  88. G. Chen, Z. Dong, D. J. Hill, et al. Exploring reliable strategies for defending power systems against targeted attacks. IEEE Transactions on Power Systems, 2011, 26(3): 1000–1009.

    Article  Google Scholar 

  89. L. Zhao, B. Zeng. Vulnerability analysis of power grids with line switching. IEEE Transactions on Power Systems, 2013, 28(3): 2727–2736.

    Article  Google Scholar 

  90. M. P. Scaparra, R. L. Church. A bilevel mixed-integer program for critical infrastructure protection planning. Computers & Operations Research, 2008, 35(6): 1905–1923.

    Article  MATH  Google Scholar 

  91. J. M. Arroyo. Bilevel programming applied to power system vulnerability analysis under multiple contingencies. IET Generation, Transmission & Distribution, 2010, 4(2): 178–190.

    Article  Google Scholar 

  92. G. Brown, M. Carlyle, J. Salmeron, et al. Defending critical infrastructure. Interfaces, 2006, 36(6): 530–544.

    Article  Google Scholar 

  93. Y. Yao, T. Edmunds, D. Papageorgiou, et al. Trilevel optimization in power network defense. IEEE Transactions on Systems, Man, and Cybernetics–Part C: Applications and Reviews, 2007, 37(4): 712–718.

    Article  Google Scholar 

  94. W. Yuan, L. Zhao, B. Zeng. Optimal power grid protection through a defender-attacker-defender model. Reliability Engineering & System Safety, 2014, 121: 83–89.

    Article  Google Scholar 

  95. N. Alguacil, A. Delgadillo, J. M. Arroyo. A trilevel programming approach for electric grid defense planning. Computers & Operations Research, 2014, 41: 282–290.

    Article  MathSciNet  MATH  Google Scholar 

  96. X. Zhou, S. Chen, Z. Lu. Review and prospect for power system development and related technologies: a concept of three-generation power systems. Proceedings of the CSEE, 2013, 36(22): 2–11.

    Google Scholar 

  97. S. Mei, X. Zhang, M. Cao. Power Grid Complexity. Berlin: Springer, 2011.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Additional information

This work was supported by National Natural Science Foundation of China (No. 51621065).

Shengwei MEI is currently a Professor with Tsinghua University, Beijing, China. His research interests include power system complexity and control, game theory and its application in power systems.

Wei WEI is currently an Assistant Professor with Tsinghua University. His research interests include applied optimization, energy economics, and interdependent energy networks.

Feng LIU is an Associate Professor with Tsinghua University. His research interests include power system distributed control and optimization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, S., Wei, W. & Liu, F. On engineering game theory with its application in power systems. Control Theory Technol. 15, 1–12 (2017). https://doi.org/10.1007/s11768-017-6186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-017-6186-y

Keywords

Navigation