Skip to main content
Log in

On linear observers and application to fault detection in synchronous generators

  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Luenberger. Observing the state of a linear system. IEEE Transactions on Military Electronics, 1964, 8(2): 74–80.

    Article  Google Scholar 

  2. D. Luenberger. An introduction to observers. IEEE Transactions on Automatic Control, 1971, 16(6): 596–602.

    Article  MathSciNet  Google Scholar 

  3. S. Balemi. Partial-order reduction of observers for linear systems. Proceedings of the 17th IFAC World Congress. Seoul, Korea: Elsevier, 2008: 7723–7728.

    Google Scholar 

  4. R. J. Miller, R. Mukundan. On designing reduced-order observers for linear time-invariant systems subject to unknown inputs. International Journal of Control, 1982, 35(1): 183–188.

    Article  MATH  Google Scholar 

  5. F. Yang, R. Wilde. Observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 1988, 33(7): 677–681.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Hou, P. Muller. Design of observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 1992, 37(6): 871–875.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Hou, P. C. Muller. Disturbance decoupled observer design: a unified viewpoint. IEEE Transactions on Automatic Control, 1994, 39(6): 1338–1341.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Darouach, M. Zasadzinski, S. Xu. Full-order observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 1994, 39(3): 606–609.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Lungu, R. Lungu. Full-order observer design for linear systems with unknown inputs. International Journal of Control, 2012, 85(10): 1602–1615.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Samantaray, B. Bouamama. Model-based Process Supervision: A Bond Graph Approach. Series: Advances in Industrial Control. Berlin: Springer-Verlag, 2008.

    Google Scholar 

  11. J. Park, G. Rizzoni, W. B. Ribbens. On the representation of sensor faults in fault detection filters. Automatica, 1994, 30(11): 1793–1795.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Wang, S. Daley. Actuator fault diagnosis: an adaptive observerbased technique. IEEE Transactions on Automatic Control, 1996, 41(7): 1073–1078.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Hammouri, M. Kinnaert, E. H. El Yaagoubi. Observer-based approach to fault detection and isolation for nonlinear systems. IEEE Transactions on Automatic Control, 1999, 44(10): 1879–1884.

    Article  MATH  Google Scholar 

  14. Z. Gao, T. Breikin, H. Wang. High-gain estimator and fault-tolerant design with application to a gas turbine dynamic system. IEEE Transactions on Control Systems Technology, 2007, 15(4): 740–753.

    Article  Google Scholar 

  15. J. K. Park, D. R. Shin, T. M. Chung. Dynamic observers for linear time-invariant systems. Automatica, 2002, 38(6): 1083–1087.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Wahrburg, J. Adamy. Robust fault isolation using dynamically extended observers. IEEE International Symposium on Intelligent Control. Dubrovnik, Croatia: IEEE, 2012: 1201–1206.

    Google Scholar 

  17. M. Wu, K. Lou, F. Xiao, et al. Design of equivalent-input-disturbance estimator using a generalized state observer. Journal of Control Theory and Applications, 2013, 11(1): 74–79.

    Article  MathSciNet  Google Scholar 

  18. K. Emami, B. Nener, V. Sreeram, et al. A fault detection technique for dynamical systems. Proceedings of the 8th IEEE International Conference on Industrial and Information Systems. Peradeniya, Sri Lanka: IEEE, 2013: 201–206.

    Google Scholar 

  19. I. Hwang, S. Kim, Y. Kim, et al. A survey of fault detection, isolation, and reconfiguration methods. IEEE Transactions on Control Systems Technology, 2010, 18(3): 636–653.

    Article  MathSciNet  Google Scholar 

  20. T. Sellami, H. Berriri, S. Jelassi, et al. Sliding mode observer-based fault-detection of inter-turn short-circuit in induction motor. Proceedings of the 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. Sousse, Tunisia: IEEE, 2013: 524–529.

    Google Scholar 

  21. S. Shao, P. Wheeler, J. Clare, et al. Fault detection for modular multilevel converters based on sliding mode observer. IEEE Transactions on Power Electronics, 2013, 28(11): 4867–4872.

    Article  Google Scholar 

  22. K. Zhang, B. Jiang, P. Shi, Observer-based Fault Estimation and Accomodation for Dynamic Systems. Series: Lecture Notes in Control and Information Sciences. Berlin: Springer-Verlag, 2012.

    Google Scholar 

  23. W. Chen, F. N. Chowdhury, A. Djuric, et al. Robust fault detection of turbofan engines subject to adaptive controllers via a total measurable fault information residual (ToMFIR) technique. ISA Transactions, 2014, 53(5): 1383–1388.

    Article  Google Scholar 

  24. F. Chowdhury, W. Chen. A modified approach to observer-based fault detection. Proceedings of the 22nd IEEE International Symposium on Intelligent Control. Singapore: IEEE, 2007: 539–543.

    Google Scholar 

  25. R. Fiser, D. Makuc, H. Lavric, et al. Modeling, analysis and detection of rotor field winding faults in synchronous generators. Proceedings of the XIX International Conference on Electrical Machines. Rome, Italy: IEEE, 2010: DOI 10. 1109/ICELMACH.2010.5608042.

    Google Scholar 

  26. C. Gaona, F. Blazquez, P. Frias, et al. A novel rotor ground-fault-detection technique for synchronous machines with static excitation. IEEE Transactions on Energy Conversion, 2010, 25(4): 965–973.

    Article  Google Scholar 

  27. T. Batzel. Observer-based monitoring of synchronous generator winding health. IEEE/PES Power Systems Conference and Exposition. Atlanta: IEEE, 2006: 1150–1155.

    Google Scholar 

  28. A. Yazdani, R. Iravani. A neutral-point clamped converter system for direct-drive variable-speed wind power unit. IEEE Transactions on Energy Conversion, 2006, 21(2): 596–607.

    Article  Google Scholar 

  29. K. Malekian, A. Shirvani, U. Schmidt, et al. Detailed modeling of wind power plants incorporating variable-speed synchronous generator. IEEE Electrical Power & Energy Conference. Montreal: IEEE, 2009: DOI 10.1109/EPEC.2009.5420926.

    Google Scholar 

  30. A. Eid, H. El-Kishky, M. Abdel-Salam, et al. On power quality of variable-speed constant-frequency aircraft electric power systems. IEEE Transactions on Power Delivery, 2010, 25(1): 55–65.

    Article  Google Scholar 

  31. I. Moir, A. Seabridge, Design and Development of Aircraft Systems. Chichester: John Wiley & Sons, 2012.

    Book  Google Scholar 

  32. V. Biagini, P. Zanchetta, M. Odavic, et al. Control and modulation of a multilevel active filtering solution for variable-speed constant-frequency more-electric aircraft grids. IEEE Transactions on Industrial Informatics, 2013, 9(2): 600–608.

    Article  Google Scholar 

  33. J. Ackermann. Sampled-data Control Systems. Berlin: Springer-Verlag, 1985.

    Book  MATH  Google Scholar 

  34. R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME — Journal of Basic Engineering, 1960, 82: 35–45.

    Article  Google Scholar 

  35. M. Darouach. Complements to full order observer design for linear systems with unknown inputs. Applied Mathematics Letters, 2009, 22(7): 1107–1111.

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Hui, S. Zak. Low-order unknown input observers. in Proceedings of the American Control Conference. New York: IEEE, 2005: 4192–4197.

    Google Scholar 

  37. R. J. Patton, P. M. Frank, R. N. Clarke (eds.). Fault Diagnosis in Dynamic Systems: Theory and Application. Upper Saddle River: Prentice-Hall, 1989.

    Google Scholar 

  38. J. J. Gertler. Fault Detection and Diagnosis in Engineering Systems. 1st ed. Boca Raton: CRC Press, 1998.

    Google Scholar 

  39. T. Wu, T. Camarano, J. Zumberge, et al. Electromagnetic Design of Aircraft Synchronous Generator with High Power Density. Nashville: American Institute of Aeronautics and Astronautics, 2012.

    Google Scholar 

  40. T. Lipo. Analysis of Synchronous Machines. 2nd ed. Boca Raton: CRC Press, 2012.

    Book  Google Scholar 

  41. M. Eremia, M. Shahidehpour (eds.). Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control. ser. IEEE Press Series on Power Engineering. Hoboken: John Wiley & Sons, 2013.

  42. J. Machowski, J. Bialek, J. Bumby. Power System Dynamics and Stability. Hoboken: John Wiley & Sons, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Erik Stellet.

Additional information

Jan Erik STELLET received the B.Sc. and M.Sc. degrees in Electrical Engineering and Information Technology from the Karlsruhe Institute of Technology in 2010 and 2012, respectively. He is currently a Ph.D. student at the Karlsruhe Institute of Technology.

Tobias ROGG received the B.Sc. and M.Sc. degrees in Electrical Engineering and Information Technology from the Karlsruhe Institute of Technology in 2011 and 2014, respectively. He is currently a Ph.D. student at the Swiss Federal Institute of Technology in Zurich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stellet, J.E., Rogg, T. On linear observers and application to fault detection in synchronous generators. Control Theory Technol. 12, 345–356 (2014). https://doi.org/10.1007/s11768-014-3036-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-014-3036-z

Keywords

Navigation