Skip to main content
Log in

Adaptive integral higher order sliding mode controller for uncertain systems

  • Published:
Journal of Control Theory and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive integral higher order sliding mode (HOSM) controller for uncertain systems. Instead of a regular control input, the derivative of the control input is used in the proposed control law. The discontinuous sign function in the controller is made to act on the time derivative of the control input. The actual control signal obtained by integrating the derivative control signal is smooth and chattering free. The adaptive tuning law used in the proposed controller eliminates the need of prior knowledge about the upper bound of the system uncertainties. Stability and robustness of the proposed controller are proved by using the classical Lyapunov criterion. Simulation results demonstrate the advantages of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ikhouane, M. Krstic. Robustness of the tuning functions adaptive backstepping design for linear systems. IEEE Transactions on Automatic Control, 1998, 43(3): 431–437.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. K. Khalil. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall, 2002.

    MATH  Google Scholar 

  3. S. V. Emelyanov. Variable structure control systems. Nauka, 1967, 35: 120–125.

    Google Scholar 

  4. W. Gao, J. C. Hung. Variable structure control of nonlinear systems. IEEE Transactions on Industrial Electronics, 1993, 41(1): 45–50.

    Google Scholar 

  5. V. I. Utkin. Sliding Modes in Control and Optimization. Berlin: Springer-Verlag, 1992.

    Book  MATH  Google Scholar 

  6. Q. Zong, Z. Zhao, J. Zhang. Higher order sliding mode control with selftuning law based on integral sliding mode. IET Control Theory and Applications, 2010, 4(7): 1282–1289.

    Article  MathSciNet  Google Scholar 

  7. K. C. Veluvolu, Y. C. Soh. High-gain observers with sliding mode for state and unknown input estimations. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3386–3393.

    Article  Google Scholar 

  8. C. J. Fallaha, M. Saad, H. Y. Kanaan, et al. Sliding-mode robot control with exponential reaching law. IEEE Transactions on Industrial Electronics, 2011, 58(2): 600–610.

    Article  Google Scholar 

  9. H. Lee, V. I. Utkin. Chattering suppression methods in sliding mode control systems. Annual Reviews in Control, 2007, 31(2): 179–188.

    Article  Google Scholar 

  10. A. Mezouar, M. K. Fellah, S. Hadjeri. Adaptive sliding-mode-observer for sensorless induction motor drive using two-time-scale approach. Simulation Modelling Practice and Theory, 2008, 16(2): 1323–1336.

    Article  Google Scholar 

  11. A. Levant. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 1993, 58(6): 1247–1263.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Levant. Universal single-inputsingle-output (SISO) sliding-mode controllers with finite-time convergence. IEEE Transactions on Automatic Control, 2001, 46(1): 1447–1451.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Levant. Finite differences in homogeneous discontinuous control. IEEE Transactions on Automatic Control, 2007, 52(7): 1208–1217.

    Article  MathSciNet  Google Scholar 

  14. A. Levant. Higher-order sliding modes, differentiation and outputfeedback control. International Journal of Control, 2003, 76(9/10): 924–941.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Levant. Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 2011, 50(11): 1812–1816.

    Article  MathSciNet  Google Scholar 

  16. I. Eker. Second-order sliding mode control with experimental application. ISA Transactions, 2010, 46(3): 394–405.

    Article  Google Scholar 

  17. B. Feng, G. Ma, Q. Wen, et al. Robust chattering-free sliding mode control of space robot in task space. Journal of Control Theory and Applications, 2008, 6(2): 146–152.

    Article  MathSciNet  Google Scholar 

  18. T. Kuo, Y. Huang, S. Chang. Sliding mode control with self-tuning law for uncertain nonlinear systems. ISA Transactions, 2008, 47(2): 171–178.

    Article  Google Scholar 

  19. J. Fei, C. Batur. A novel adaptive sliding mode control with application to MEMS gyroscope. ISA Transactions, 2009, 48(1): 73–78.

    Article  Google Scholar 

  20. R. Wai, L. Chang. Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique. IEEE Transactions on Industrial Electronics, 2006, 53(2): 674–692.

    Article  Google Scholar 

  21. Y. Huang, T. Kuo, S. Chang. Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Transactions on Systems, Man, And Cybernetics - Part B: Cybernetics, 2008, 38(2): 534–539.

    Article  Google Scholar 

  22. H. F. Ho, Y. Wong, A. B. Rad. Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. Simulation Modelling Practice and Theory, 2009, 17(7): 1199–1210.

    Article  Google Scholar 

  23. F. Plestan, Y. Shtessel, V. Bregeault, et al. New methodologies for adaptive sliding mode control. International Journal of Control, 2010, 83(9): 1907–1919.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Li, P. Liu. Adaptive tracking control of an MEMS gyroscope with H-infinity performance. Journal of Control Theory and Applications, 2011, 9(2): 237–243.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Laghrouchea, F. Plestanb, A. Glumineaub. Higher order sliding mode control based on integral sliding mode. Automatica, 2007, 43(3): 531–537.

    Article  MathSciNet  Google Scholar 

  26. S. P. Bhat, D. S. Bernstein. Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals, and Systems, 2005, 17(2): 101–127.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Defoort, T. Floquet, A. Kokosyd, et al. A novel higher order sliding mode control scheme. System & Control Letters, 2009, 58(2): 102–108.

    Article  MATH  Google Scholar 

  28. A. F. Filippov. Differential equations with discontinuous right-hand side. American Mathematical Society Translations, 1964, 42: 199–231.

    Google Scholar 

  29. Y. Wang, X. Zhang, X. Yuan, et al. Position-sensorless hybrid sliding-mode control of electric vehicles with brushless DC motor. IEEE Transactions on Vehicular Technology, 2011, 60(2): 421–432.

    Article  MATH  Google Scholar 

  30. H. Li, X. Liao, C. Li, et al. Chaos control and synchronization via a novel chatter free sliding mode control strategy. Neurocomputing, 2011, 74(17): 3212–3222.

    Article  Google Scholar 

  31. N. Zhang, M. Yang, Y. Jing, et al. Congestion control for Diffserv network using second-order sliding mode control. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3330–3339.

    Article  Google Scholar 

  32. S. Mondal, C. Mahanta. Nonlinear sliding surface based second order sliding mode controller for uncertain linear systems. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(9): 3760–3769.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. I. Utkin, K. K. D. Young. Methods for constructing discontinuity planes in multidimensional variable structure systems. Automatic Remote Control, 1978, 39: 1466–1470.

    MATH  Google Scholar 

  34. K. D. Young, V. I. Utkin, U. Ozguner. A control engineers guide to sliding mode control. IEEE Transactions on Control System Technology, 1999, 7(3): 328–342.

    Article  Google Scholar 

  35. S. Skogestad. Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 2003, 13(4): 291–309.

    Article  MathSciNet  Google Scholar 

  36. W. Chang, S. Shih. PID controller design of nonlinear systems using an improved particle swarm optimization approach. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(11): 3632–3639.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Mondal.

Additional information

Sanjoy MONDAL received his B.Tech and M.Tech degree in Electrical Engineering from National Institute of Technology, Durgapur, India. Currently, he is a Ph.D. candidate at the Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, India. His research interests include sliding mode control and robust control.

Chitralekha MAHANTA received her M.Tech and Ph.D. degrees in Electrical Engineering from Indian Institute of Technology Delhi, India. Currently, she is an associate professor in the Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, India. Her research interests include control theory application, robust control and intelligent control.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S., Mahanta, C. Adaptive integral higher order sliding mode controller for uncertain systems. J. Control Theory Appl. 11, 61–68 (2013). https://doi.org/10.1007/s11768-013-1180-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-013-1180-5

Keywords

Navigation