Journal of Control Theory and Applications

, Volume 10, Issue 2, pp 144–151 | Cite as

Convergence and error bounds of adaptive filtering under model structure and regressor uncertainties

  • Ben G. Fitzpatrick
  • Gang G. Yin
  • Le Yi Wang


Adaptive filtering algorithms are investigated when system models are subject to model structure errors and regressor signal perturbations. System models for practical applications are often approximations of high-order or nonlinear systems, introducing model structure uncertainties. Measurement and actuation errors cause signal perturbations, which in turn lead to uncertainties in regressors of adaptive filtering algorithms. Employing ordinary differential equation (ODE) methodologies, we show that convergence properties and estimation bias can be characterized by certain differential inclusions. Conditions to ensure algorithm convergence and bounds on estimation bias are derived. These findings yield better understanding of the robustness of adaptive algorithms against structural and signal uncertainties.


Adaptive filtering Structural uncertainties Robustness Estimation bias 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Fitzpatrick, G. Yin, L. Wang. Robustness, weak stability, and stability in distribution of adaptive filtering algorithms under model mismatch. Multiscale Modeling & Simulation, 2011, 9(1): 183–207.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. Z. Has’minskii. Stochastic Stability of Differential Equations. Alphen aan den Rijn, Netherlands: Sijthoff & Noordhoff, 1980.Google Scholar
  3. [3]
    W. M. Wonham. Lyapunov criteria for weak stochastic stability. Journal of Differential Equations, 1966, 2(2): 195–207.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    G. Yin, C. Zhu. Hybrid Switching Diffusions: Properties and Applications. Berlin: Springer-Verlag, 2010.zbMATHCrossRefGoogle Scholar
  5. [5]
    P. K. Orzechowski, N. Chen, S. Gibson, et al. Optimal suppression of laser beam jitter by high-order RLS adaptive control. IEEE Transactions on Control Systems Technology, 2008, 16(2): 255–267.CrossRefGoogle Scholar
  6. [6]
    N. O. Pérez, N. Chen, S. Gibson, et al. Variable-order adaptive control of a microelectromechanical steering mirror for suppression of laser beam jitter. Optical Engineering, 2006, 45(10): 104206-1–104206-12.Google Scholar
  7. [7]
    A. Benveniste, M. Metivier, P. Priouret. Adaptive Algorithms and Stochastic Approximations. Berlin: Springer-Verlag, 1990.zbMATHGoogle Scholar
  8. [8]
    H. Chen, G. Yin. Asymptotic properties of sign algorithms for adaptive filtering. IEEE Transactions on Automatic Control, 2003, 48(9): 1545–1556.MathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Eweda, O. Macchi. Quadratic mean and almost-sure convergence of unbounded stochastic approximation algorithms with correlated observations. Annales de l’Institut Henri Poincare (Section B), 1983, 19(3): 235–255.MathSciNetzbMATHGoogle Scholar
  10. [10]
    H. J. Kushner, A. Shwartz. Weak convergence and asymptotic properties of adaptive filters with constant gains. IEEE Transactions on Information Theory, 1984, 30(2): 177–182.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    H. J. Kushner, G. Yin. Stochastic Approximation and Recursive Algorithms and Applications. 2nd ed. New York: Springer-Verlag, 2003.zbMATHGoogle Scholar
  12. [12]
    C. P. Kwong. Dual signal algorithm for adaptive filtering. IEEE Transactions on Communications, 1986, 34(12): 1272–1275.CrossRefGoogle Scholar
  13. [13]
    L. Ljung. System Identification: Theory for the User. Englewood Cliffs: Prentice Hall, 1987.zbMATHGoogle Scholar
  14. [14]
    O. Macchi, E. Eweda. Convergence analysis of self-adaptive equalizers. IEEE Transactions on Information Theory, 1984, 30(2):161–176.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    L. Wang, G. Yin, J. Zhang, et al. System Identification with Quantized Observations: Theory and Applications. Boston: Birkhauser, 2010.CrossRefGoogle Scholar
  16. [16]
    B. Widrow, S.D. Stearns. Adaptive Signal Processing. Englewood Cliffs: Prentice Hall, 1985.zbMATHGoogle Scholar
  17. [17]
    G. Yin, V. Krishnamurthy, C. Ion. Iterate-averaging sign algorithms for adaptive filtering with applications to blind multiuser detection. IEEE Transactions on Information Theory, 2003, 49(3): 657–671.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    L. V. Thanh, G. Yin, L. Wang. State observers with random sampling times and convergence analysis of double-indexed and randomly-weighted sums of mixing processes. SIAM Journal on Control and Optimization, 2011, 49(1): 106–124.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    L. Wang, G. Yin. Quantized identification with dependent noise and Fisher information ratio of communication channels. IEEE Transactions on Automatic Control, 2010, 55(3): 674–690.MathSciNetCrossRefGoogle Scholar
  20. [20]
    P. Billingsley. Convergence of Probability Measures. New York: John Wiley & Sons, 1968.zbMATHGoogle Scholar
  21. [21]
    S. N. Ethier, T. G. Kurtz. Markov Processes, Characterization and Convergence. New York: John Wiley & Sons, 1986.zbMATHGoogle Scholar
  22. [22]
    H. J. Kushner. Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory. Cambridge, MA: The MIT Press, 1984.Google Scholar
  23. [23]
    W. A. Fuller. Measurement Error Models. New York: John Wiley & Sons, 1987.zbMATHCrossRefGoogle Scholar
  24. [24]
    H. Chen, L. Guo, A. Gao. Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds. Stochastic Processes and Their Applications, 1987, 27(2): 217–231.MathSciNetCrossRefGoogle Scholar
  25. [25]
    H. Chen. Recursive Estimation and Control for Stochastic Systems. New York: John Wiley & Sons, 1985.Google Scholar
  26. [26]
    G. Yin. Asymptotic properties of an adaptive beam former algorithm. IEEE Transactions on Information Theory, 1989, 35(4): 859–867.zbMATHCrossRefGoogle Scholar

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ben G. Fitzpatrick
    • 1
    • 2
  • Gang G. Yin
    • 3
  • Le Yi Wang
    • 4
  1. 1.Tempest Technologies 8939 South Sepulveda BoulevardLos AngelesUSA
  2. 2.Department of MathematicsLoyola Marymount UniversityLos AngelesUSA
  3. 3.Department of MathematicsWayne State UniversityDetroitUSA
  4. 4.Department of Electrical and Computer EngineeringWayne State UniversityDetroitUSA

Personalised recommendations