Gait planning and intelligent control for a quadruped robot

  • Baoping Wang
  • Renxi Hu
  • Xiaodong Zhang
  • Chuangfeng Huai
Article

Abstract

We present a method for designing free gaits for a structurally symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. The robot’s virtual model is constructed and a control algorithm is proposed by applying virtual components at some strategic locations. The deliberative-based controller can generate flexible sequences of leg transferences while maintaining walking speed, and choose optimum foothold for moving leg based on integration data of exteroceptive terrain profile. Simulation results are presented to show the gait’s efficiency and system’s stability in adapting to an uncertain terrain.

Keywords

Structural symmetry Quadruped robot Gait planning Intelligent control Virtual model 

References

  1. [1]
    S. Hirose, Y. Fukuda, H. Kikuchi. The gait control system of a quadruped walking vehicle[J]. Advanced Robotics, 1986, 1(4): 289–323.Google Scholar
  2. [2]
    S. Hirose, H. Kikuchi, Y. Umetani. Standard circular gait of a quadruped walking vehicle[J]. Advanced Robotics, 1986, 1(2): 143–164.CrossRefGoogle Scholar
  3. [3]
    D. P. Wong, D. E. Orin. Control of a quadruped standing jump over irregular terrain obstacles[J]. Autonomous Robots, 1995, 1(2): 111–129.CrossRefGoogle Scholar
  4. [4]
    D. L. Jindrich, R. J. Full. Many-legged maneuver-ability: Dynamics of turning in hexapods[J]. The Journal of Experimental Biology, 1999, 202(12): 1603–1623.Google Scholar
  5. [5]
    Y. Fukuoka, H. Kimura, Y. Hada, et al. Adaptive dynamic walking of a quadruped robot ‘Tekken’ on irregular terrain using a neural system model[C]//IEEE/RSJ International Conference on Robotics and Automation. Piscataway: IEEE Press, 2003: 2037–2042.Google Scholar
  6. [6]
    H. Tsukakoshi, S. Hirose. The proposal of the intermittent crawl gait and its generation[J]. Robotics Society of Japan, 1997, 17(2): 301–309.Google Scholar
  7. [7]
    A. Konno, K. Ogasawara, Y. Hwang, et al. An adaptive gait for quadruped robots to walk on a slope[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2003: 589–594.Google Scholar
  8. [8]
    S. Ma, T. Tomiyama, H. Wada. Omni-directional walking of a quadruped robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2002: 2605–2612.Google Scholar
  9. [9]
    L. Zhang, S. Ma, Y. Honda, et al. Omni-directional walking of a Quadruped Robot on a Slope[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE Press, 2004: 268–273.CrossRefGoogle Scholar
  10. [10]
    S. Bai, K. H. Low, T. Zielinska. Quadruped free gait generation based on the primary/secondary gait[J]. Robotica, 1999, 17(4): 405–412.CrossRefGoogle Scholar
  11. [11]
    J. Estremera, P. G. Santos. Generating continuous free crab gaits for quadruped robots on irregular terrain[J]. IEEE Transactions on Robotics, 2005, 21(6): 1067–1076.CrossRefGoogle Scholar
  12. [12]
    D. W. Corne, K. Deb, P. J. Fleming, et al. The good of the many outweighs the good of the one: Evolutionary multi-objective optimization[J]. IEEE Transactions on Connections Newsletter, 2003, 1(1): 9–13.Google Scholar

Copyright information

© Editorial Board of Control Theory and Applications, South China University of Technology and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Baoping Wang
    • 1
  • Renxi Hu
    • 2
  • Xiaodong Zhang
    • 1
  • Chuangfeng Huai
    • 3
  1. 1.Department of Mechanical and Electronic EngineeringGuangdong Baiyun UniversityGuangzhouChina
  2. 2.Department of Basic CoursesOrdnance Engineering CollegeShijiazhuangChina
  3. 3.School of Mechanical and Electronic Control EngineeringBeijing Jiaotong UniversityBeijingChina

Personalised recommendations