Skip to main content
Log in

Robust distributed controller design of rotational single-link smart materials beam

  • Brief Paper
  • Published:
Journal of Control Theory and Applications Aims and scope Submit manuscript

Abstract

A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account bounded disturbances, a robust distributed controller was constructed based on the system model, which was described by a set of partial differential equations (PDEs) and boundary conditions (BCs) . Subsequently, a finite dimensional controller was further developed, and it was proven that this controller can stabilize the finite dimensional model with arbitrary number of flexible modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

thickness of beam

b :

width of beam and that of smart material

c ε R6x6 :

symmetric matrix of elastic stiffness coefficients

C1]:

thickness of piezoelectric actuator

c2 :

thickness of piezoelectric sensor

\()\) :

stiffness per unit length of whole manipulator

c m11 :

stiffness of pure beam

c s11 :

stiffness of piezoelectric material

D ε R3 :

electrical displacement vector

Da (x,t) :

electrical displacement of piezoelectric actuator at point P

Day (x,y): y :

component of electrical displacement of piezoelectric actuator

Ds( x , t) :

electrical displacement of piezoelectric sensor at point P

Dsy (x,t): y :

component of electrical displacement of piezoelectric sensor

e(t) - d(t) - θd (t) :

error between actual trajectory and desired one

E ε R3 :

electrical field intensity vector

Ek :

system kinetic energy

Ep :

system potential energy

F ε R6 :

simplified stress vector

h ε R6x3 :

coupling coefficients matrix

h12 :

coupling parameter per unit volume of piezoelec-tric material

haL =\(\frac{1}{2}h_{12} b{\text{ x (ac}}_{{\text{1 }}} + {\text{ c}}_{\text{1}}^{\text{2}} )\) :

coupling parameter per unit length of piezoelectric actuator

haL =\( - \frac{1}{2}h_{12} b{\text{ x (ac}}_{{\text{2 }}} + {\text{ c}}_{\text{2}}^{\text{2}} )\) :

coupling parameter per unit length of piezoelectric sensor

L :

length of beam

m3 :

mass of tip payload

Ih :

inertia of hub

r (x , t) :

position vector of point P

S ε R6 :

simplified strain vector

v(x,t) :

voltage applied to piezoelectric actuator

w(x , t) :

deflection at point P

W :

virtual work done by external forces

(@#@ X0, O0,Y0):

fixed base frame

( X, 0, Y) :

local reference frame

β ε R3x3 :

symmetric matrix of impermittivity coeffi-cients

β22 :

impermittivity per unit volume of piezoelectric material

βaL = bc1β22 - :

impermittivity per unit length of piezoelectric actuator

βsL = bc2β22 :

impermittivity per unit length of piezoelectric sensor

ρ1 :

mass per unit volume of beam

ρ2 :

mass per unit volume of piezoelectric material

ρL = (c1 + c2 @#@) bρ2 + abρ1 :

mass per unit length of whole manipulator

θ ( t):

joint angle at the hub

gd(t):

desired joint angular trajectroy

τ (t):

torque applied to the base of manipulator

References

  1. Y. Sakawa, F. Marsuno, S. Fukushima, Modeling and feedback control of a flexible arm, J. of Robotic Systems, Vol. 2, No. 4, pp.453 - 472,1985.

    Article  Google Scholar 

  2. S. S. Ge, T. H. Lee, G. Zhu, Asymptotically stable end-point regulation of a flexible SCARA/Cartesian robot, IEEE/ASME Trans on Mechatronics, Vol.3, No.2, pp. 138 - 144,1998.

    Article  Google Scholar 

  3. E. F. Crawley, J. Luis, Use of piezoelectric actuators as elements of intelligent structures, AIM J. Vol.25, No.10, pp. 1373 - 1385,1987.

    Google Scholar 

  4. T. Baily, J. E. Hubbard, Distributed Piezoelectric-polymer active vibration control of a cantilever beam, J. of Guidance, Control and Dynamics, Vol.8, No.5, pp.605 - 611,1985.

    Google Scholar 

  5. T. Ikeda, Fundamentals of Piezoelectricity, Oxford Science Press, Oxford, New York, 1990.

    Google Scholar 

  6. S. S. Ge, T. H. Lee, J. Q. Gong, Dynamic modelling of a smart materials robot, AIAA J., Vol.36, No.8, pp. 1466- 1478,1998.

    Article  Google Scholar 

  7. H. Baruh, K. Choe, Sensor placement in structural control, J of Guidance, Control and [Dynamics, Vol.13, No. 3, pp.524 -533, 1990.

    Article  MATH  Google Scholar 

  8. S. S. Ge, T. H. Lee, C. J. Harris, Adaptive Neural Netwrok Control of Robotic Manipulators, World Scientific Publishing Co., Singapore, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, J., Ge, S.S. & Wan, B. Robust distributed controller design of rotational single-link smart materials beam. J. Control Theory Appl. 1, 91–96 (2003). https://doi.org/10.1007/s11768-003-0015-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-003-0015-1

Keywords

Navigation