Skip to main content
Log in

Self-organized motion in anisotropic swarms

  • Brief Paper
  • Published:
Journal of Control Theory and Applications Aims and scope Submit manuscript

Abstract

This paper considers an anisotropic swarm model with a class of attraction and repulsion functions. It is shown that the members of the swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover, It is also proved that under certain conditions, the swarm system can be completely stable, i.e., every solution converges to the equilibrium points of the system. The model and results of this paper extend a recent work on isotropic swarms to more general cases and provide further insight into the effect of the interaction pattern on self-organized motion in a swarm system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References:

  1. C.M. Breder, Equations descriptive of fish schools and other animal aggregations, Ecology, Vol. 35, No. 3, pp. 361 - 370,1954.

    Article  Google Scholar 

  2. J. Bender, R. Fenton, On the flow capacity of automated highways, Transport. Sci., Vol.4, No.l, pp.52–63, Feb. 1970.

    Article  Google Scholar 

  3. F. Giulietti, L. Pollini, M. Innocenti, Autonomous formation flight, IEEE Control Systems Magazine, Vol. 20, No. 6, pp. 34 - 44, Dec. 2000.

    Article  Google Scholar 

  4. T. Balch, R. C. Arkin, Behavior-based formation control for multirobot teams, IEEE Trans, on Robot Automaton, Vol. 14, No.6, pp. 926–939, Dec. 1998.

    Article  Google Scholar 

  5. J. P. Desai, J. Ostrowski, V. Kumar, Controlling formations of multiple mobile robots, Proc.IEEE Int. Conf. Robotics Automation, IEEE Press, Leuven, Belgium, pp.2864 - 2869, May 1998.

    Google Scholar 

  6. M. Egerstedt, X. Hu, Formation constrained multi-agent control, IEEE Trans. on Robot Automation, Vol. 17, No. 6, pp. 947 - 951, Dec. 2001.

    Article  Google Scholar 

  7. P. Ögren, M. Egerstedt, X. Hu, A control Lyapunov function approach to multi-agent coordination, Proc. IEEE Conf. Decision Control, IEEE Press, Orlando, FL, pp. 1150 - 1155,December 2001.

    Google Scholar 

  8. N. E. Leonard, E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, Proc. IEEE Conf. Decision Control, IEEE Press, Orlando, FL, pp.2968 - 2973, Dec. 2001.

    Google Scholar 

  9. P. Tabuada, G. J. Pappas, P. Lima, Feasable formations of multi-agent systems, Proc. Amer. Control Conf., IEEE Press, Arlington, VA, pp.56 - 61, June 2001.

    Google Scholar 

  10. J. H. Reif, H. Wang, Social potential fields: A distributed behavioral control for autonomous robots, Robot. Auton. Syst., Vol.27, No. 2, pp.171 - 194, 1999.

    Article  Google Scholar 

  11. I. Suzuki, M. Yamashita, Distributed anonymous mobile robots: Formation of geometric patterns, SIAMJ. Comput., Vol.28, No. 4, pp. 1347–1363, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Jin, P. Liang, G. Beni, Stability of synchronized distributed control of discrete swarm structures, Proc. IEEE Int. Conf. Robotics Automation, IEEE Press, San Diego; CA, pp. 1033 - 1038, May 1994.

    Google Scholar 

  13. G. Beni, P. Liang, Pattern reconfiguration in swarms-convergence of a distributed asynchronous and bounded iterative algorithm, IEEE Trans. Robot Automation, Vol. 12, No. 3, pp.485 - 490, June 1996.

    Article  Google Scholar 

  14. Y. Liu, K. M. Passino, M. Polycarpou, Stability analysis of one-dimensional asynchronous swarms, Proc. Amer. Control Conf., IEEE Press, Arlington, VA, pp.716 - 721, June 2001.

    Google Scholar 

  15. Y. Liu, K. M. Passino, M. Polycarpou, Stability analysis of one-dimensional asynchronous mobile swarms, Proc. IEEE. Conf. Decision Control, IEEE Press, Orlando, FL, pp. 1077 - 1082, Dec. 2001.

    Google Scholar 

  16. D. Swaroop, J. K. Hedrick, C. C. Chien, P. Ioannou,A comparison of spacing and headway control laws for automatically controlled vehicles, Veh. Syst. Dyna., Vol.23, No.4, pp.597–625, 1994.

    Google Scholar 

  17. S. Darbha, K. P. Rajagopal, Intelligent cruise control systems and traffic flow stability, Transport. Res. C, Vol. 7, No. 6, pp. 329 - 352,1999.

    Article  Google Scholar 

  18. Y. Liu, K. M. Passino, M. Polycarpou, Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology, in Proc. Amer. Control Conf., IEEE Press, Anchorage, AK, pp. 1278–1283, May 2002

    Google Scholar 

  19. V. Gazi, K. M. Passino, Stability analysis of swarms, IEEE Trans. on Automatic Control, Vol.48, No.4, pp.692–697, Apr.2003.

    Article  MathSciNet  Google Scholar 

  20. V. Gazi, K. M. Passino, A class of attraction/repulsion functions for stable swarm aggregations, Proc. IEEE Conf. Decision Control, IEEE Press, Las Vegas, NV, pp.2842–2847, Dec.2002.

    Google Scholar 

  21. A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans, on Automatic Control, Vol. 48, No. 6, pp. 988 - 1001, June 2003.

    Article  MathSciNet  Google Scholar 

  22. K. Warburton, J. Lazarus, Tendency-distance models of social cohesion in animal groups, J. Theoret. Biolo., Vol.150, No.4, pp.473 -488, 1991.

    Article  Google Scholar 

  23. A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks, and herds, Adv. Biophys., Vol.22, No.l, pp.1 -94, 1986.

    Article  Google Scholar 

  24. D. Grünbaum, A. Okubo, Modeling social animal aggregations, Frontiers in Theoretical Biology, Springer-Verlag, New York, Vol. 100, Lecture Notes in Biomathematics, pp.296–325, 1994.

    Google Scholar 

  25. J. K. Parrish, W. M. Hamner, Eds., Animal Groups in Three Dimensions, Cambridge Univ. Press, Cambridge, U.K., 1997.

    Google Scholar 

  26. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Vol.675, No.6, pp. 1226–1229, Aug.1995.

    Article  Google Scholar 

  27. A. Czirok, E. Ben-Jacob, I. Cohen, T. Vicsek, Formation of complex bacterial colonies via self-generated vortices, Phys. Rev. E, Vol. 54, No.2, pp.1791–1801, Aug. 1996.

    Article  Google Scholar 

  28. A. Czirok, H. E. Stanley, T. Vicsek, Spontaneously ordered motion of self-propelled particles, J. Phys. A: Math., General, Vol.30, No.5, pp.1375–1385, 1997.

    Article  Google Scholar 

  29. A. Czirok T. Vicsek, Collective behavior of interacting self-propelled particles, Phys. A, Vol.281, No.l, pp. 17 - 29,2000.

    Google Scholar 

  30. N. Shimoyama, K. Sugawa, T. Mizuguchi, Y. Hayakawa, M. Sano, Collective motion in a system of motile elements, Phys. Rev. Lett., Vol.76, No.20, pp.3870 - 3873, May 1996.

    Article  Google Scholar 

  31. H. Levine, W. J. Rappel, Self-organization in systems of self-propelled particles, Phys. Rev. E, Vol. 63, No. 1, pp. 0171011 - 0171014,Jan.2001.

    Google Scholar 

  32. R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  33. T. Chu, L. Wang, Self-organization in nonreciprocal swarms, Technical Report ICL-03-01, Center for Systems and Control, Peking University, Beijing, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Natural Science Foundation of China (No. 60274001 and No. 10372002) and the National Key Basic Research and Development Program (No.2002CB312200).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, T., Wang, L. & Chen, T. Self-organized motion in anisotropic swarms. J. Control Theory Appl. 1, 77–81 (2003). https://doi.org/10.1007/s11768-003-0012-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-003-0012-4

Keywords

Navigation