Skip to main content
Log in

An inner-feedback-style traveling-wave tube oscillator

  • Published:
Journal of Electronics (China)

Abstract

A new concept of inner-feedback-style traveling wave tube oscillator, which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coupler and a mechanical tuner connected to the input coupler, is proposed. Simulations by CHIPIC code show that the inner-feedback-style traveling wave tube oscillator having 100W of power, about 10% of electron efficiency and a tunable band of 73.35–73.91 GHz may be achieved. Compared with Backward Wave Oscillators (BWOs), the new devices have similar ability for tuning, and have much higher electron efficiency, suggesting much more potential as a Terahertz source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. N. Flanders. The pure rotational spectrum of solvated HCI: Solute-bath interaction strength and dynamics. The Journal of Physical Chemstry A, 103 (1999)49, 10054–10064.

    Article  Google Scholar 

  2. Sheng-hai Ding, Qi Li, Rui Yao, et al.. High-resolution terahertz imaging and image restoration. Applied Optics, 49(2010)36, 6834–6839.

    Article  Google Scholar 

  3. M. A. Kempkes, T. J. Hawkey, A. P. J. Gaudreau, et al.. W-band transmitter upgrade for the Haystack ultra-wideband satellite imaging radar (HUSIR). Eighth IEEE International Vacuum Electronics Conference, Kitakyushu, Japan, May 15–17, 2007, 439–440.

  4. James B. Mead and Roberte McIntosh. A 225 GHz polarimetric radar. IEEE Transactions on Microwave Theory and Technology, 38(1990)9, 1252–1258.

    Article  Google Scholar 

  5. Robert W. McMillan, C. Ward Trussell Jr., Ronald A. Bohlander, et al.. An experimental 225 GHz Pulsed coherent radar. IEEE Transactions on Microwave Theory and Technology, 39(1991)3, 555–561.

    Article  Google Scholar 

  6. Michael J. Fith and Robert Osiander. Terahertz waves for communications and sensing. Johns Hopkins APL Technical Digest, 25(2004)4, 348–355.

    Google Scholar 

  7. G. P. Gallerano and S. Biedron. Overview of terahertz radiation sources. Twenty-sixth Free-Electron Laser Conference and Eleventh FEL User-Workshop, Trieste, Italy, Aug. 29–Sep. 3, 2004, 216–221.

  8. Kaichun Zhang, Zhenhua Wu, and Shenggang liu. A study of an extended interaction oscillator with reentrance coupled-cavity in terahertz region. Journal of Infrared, Millimeter and Terahertz Waves, 30(2009), 309–318.

    Article  MATH  Google Scholar 

  9. Sudeep Bhatta Charjee, John H. Booske, Carol L. Kory, et al.. Folded waveguide traveling-wave tube sources for Terahertz radiation. IEEE Transactions on Plasma Sciences, 32(2004)3, 1002–1012.

    Article  Google Scholar 

  10. James A. Dayton Jr., Carol C. Kory, and Gerald T. Mearini. Backward wave oscillator development at 300 and 650GHz, Seventh IEEE International Vacuum Electronics Conference & Sixth IEEE International Vacuum Electron Sources Conference, Bangalore, Monterey, CA, USA, Apr. 25–27, 2006, 423–424.

  11. Yang Yan, Shenggang Liu, Xiaoyun Li, et al.. Design and demonstration of a 0.22 THz gyrotron oscillator. Chinese Science Bulletin, 54(2009)9, 1495–1499.

    Article  Google Scholar 

  12. Jack Tucek, David Gallagher, Ken Kreischer, et al.. A compact high power, 0.65 THz Source. Eighth IEEE International Vacuum Electronics Conference, Kitakyushu, Japan, May 15–17, 2007, 16–17.

  13. A. V. Galdetskiy, I. I. Golenitskiy, V. U. Myakinkov, et al.. On power consumption Reduction in 700 GHz BWO. Eleventh IEEE International Vacuum Electronics Conference, Monterey, California, USA, May 18–20, 2010, 67–58.

  14. Mauro Minei, Claudio Paoloni, David Bariou, et al.. Backward wave vacuum amplifier for THz amplification. Twelfth IEEE International Vacuum Electronics Conference, Bangalore, India, Feb. 21–24, 2011, 267–268

  15. Mauro Minei and Claudio Paoloni. Backward wave oscillator for THz application based on corrugated waveguides. IEEE International Vacuum Electronics Conference, Bangalore, India, Feb. 21–24, 2011, 265–266.

  16. C. Kory, J. M. Neilson, L. Ives, et al.. High efficiency, terahertz, backward wave oscillators. International Conference on Plasma Science, Banff, Alta., Canada, May 26–30, 2002, 171.

  17. Gao Peng, John H. Booske, Yang Zhong-Hai, et al.. Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators. ACTA Physica Sinica, 59(2010)12, 8484–8488 (Chinese). 高鹏, John H. Booske, 杨中海, 等. 太赫兹行波管再生反馈振荡器非线性理论与模拟. 物理学报, 59(2010) 12, 8484–8488.

    Google Scholar 

  18. Youngmin Shi, Larry R. Barnett, and Neville C. Luhmann. Phase-shifted traveling-wave-tube circuit for ultra-wideband high-power submillimeter-wave generation. IEEE Transactions on Electron Devices, 56(2009)5, 706–712.

    Article  Google Scholar 

  19. R. Kompfner and N. T. Williams. Back-wave tubes. Proceedings of IEE Radio Engineering, 41(1953)11, 1062–1611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zicheng Wang.

Additional information

Supported by the National Natural Science Foundation of China (No. 61172016).

Communication author: Wang Zicheng, born in 1966, male, Professor Researcher.

About this article

Cite this article

Wang, Z., Li, H., Xu, A. et al. An inner-feedback-style traveling-wave tube oscillator. J. Electron.(China) 29, 556–561 (2012). https://doi.org/10.1007/s11767-012-0889-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-012-0889-5

Key words

CLC index

Navigation