Skip to main content
Log in

A survey of deep space communications

  • Published:
Journal of Electronics (China)

Abstract

Deep space communications has played an important role in deep space exploration. Compared with common satellite and terrestrial communications, deep space communications faces more challenging environment. The paper investigated the unique features of deep space communications in detail, discussed the key technologies and its development trends for deep space communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joseph H. Yuen. Deep Space Telecommunications Systems Engineering. New York, Plenum Press, 1983, 1–80.

    Google Scholar 

  2. Yu Zhijian. Telemetry, Telecontrol and Telecommunication System in Deep Space. Beijing, National Defence Industry Press, 2009, 1–58 (in Chinese). 于志坚. 深空测控通信系统. 北京, 国防工业出版社, 2009年, 1–58.

    Google Scholar 

  3. Xiao Song, Li Yunsong, Bai Baoming, et al.. The key technologies of deep space communications. China Communications, 3(2006)6, 82–94.

    Google Scholar 

  4. Zhang Naitong, Li Hui, and Zhang Qinyu. Thought and developing trend in deep space exploration and communication. Journal of Astronautics, 28(2007)4, 14–21 (in Chinese). 张乃通, 李晖, 张钦宇. 深空探测通信技术发展趋势及思考. 宇航学报, 28(2007)4, 14–21.

    Google Scholar 

  5. Lin Mo. Trend of development of deep space tracking and communication systems. Journal of Spacecraft TT&C Technology, 24(2005)3, 7–9 (in Chinese). 林墨. 深空测控通信技术发展趋势分析. 飞行器测控学报, 24(2005)3, 7–9.

    Google Scholar 

  6. CCSDS Recommendation. http://www.CCSDS.org, 2010.11.

  7. David H. Rogstad, Alexander Mileant, and Timothy T. Pham. Antenna Arraying Techniques in the Deep Space Network. Jet Propulsion Laboratory and California Institute of Technology, Jan. 2003.

  8. M. S. Gatti. The Deep Space Network Large Array. Pasadena, California, Jet Propulsion Laboratory and California Institute of Technology, 2004, IPN Progress Report, 42–157.

  9. J. Yuan, Y. Qiu, and Q. Z. Liu. Fast analysis of multiple antennas coupling on very electrical large objects vis parallel technique. Journal of Electromagnetic Waves and Application, 22(2008)8, 1232–1241.

    Article  Google Scholar 

  10. O. I. Sukharevsky and A. Y. Shramkov. High-freqency method of antenna directional pattern calculation. Journal of Eletromagnetic Waves and Application, 21(2007)14, 2009–2023.

    Article  Google Scholar 

  11. P. A. Stadter, B. L. Kantsiper, D. G. Jablonski, et al.. Uplink arraying analysis for NASA’s deep space network. IEEE Aerospace Conference, Big Sky, MT, March 2010, 1–6.

  12. M. S. Gatti, R. Navarro, and A. Jongeling. Arraying performance of a 3-antenna demonstration array for deep space communications. IEEE Aerospace Conference, Big Sky, MT, March 2010, 1–10.

  13. S. Rawson, M. Fornaroli, M. Bozzi, et al.. Future architectures for ESA deep space ground stations antennas. Proceedings of the 5th European Conference on Antennas and Propagation, Rome, April 2011, 720–724.

  14. M. K. Simon. Bandwidth Efficient Digital Modulation with Application to Deep Space Communications. Pasadena, California, Jet Propulsion Laboratory and California Institute of Technology, June 2001, 125–185.

  15. CCSDS 401.0-B-17. Radio Frequency and Modulation Systems-Part 1: Earth Stations and Spacecraft. Washington, D. C., CCSDS, July 2006.

  16. CCSDS. Bandwidth-Efficient Modulations Summary of Definition, Implementation and Perpormance Green Book. Washington, D. C., April 2003.

  17. Hyung Chul Park, Kwyro Lee, and Kamilo Feher. Continuous phase modulation of spectrally efficient FQPSK signals. Vehicular, Technology Conference, Orlando, FL, Oct. 2003, 692–695.

  18. Yongzhao Lin and Xuewen Liu. Two classes of modulation schemes for deep space communications. China Communications, 4(2006)6, 95–103.

    Google Scholar 

  19. K. Andrews, D. Lee, F. Pollara, et al.. Performance comparison of selected bandwidth-efficient coded modulation. Pasadena, California, Jet Propulsion Laboratory and California Institute of Technology, 2002, JPL Technical Report, 42–151.

  20. B. Honary, B. M. Hemvi, S. Kariyawasam, et al.. Design implementation and applications of low-complexity LDPC codes. IEEE Proceedings of ICSPCS, Gold Coast, QLD, Dec. 2008, 1–1.

  21. Zhidong Xie, Gengxin Zhang, Hongpeng Zhu, et al.. A packet level FEC code for deep space communications. IEEE Wireless Communications and Signal Processing, Suzhou China, Oct. 2010, 1–5.

  22. Zhengan Zhai, Lun Luo and Xinhua Shi. Research on channel encoding and decoding technologies for deep space communication. Journal of Spacecraft TT&C Technology, 24(2005)3, 1–5 (in Chinese). 翟政安, 罗伦, 时信华. 深空通信信道编译码技术研究. 飞行器测控学报, 24(2005)3, 1–5.

    Google Scholar 

  23. K. S. Andrews, D. Divsalar, S. Dolinar, et al.. The development of turbo and LDPC codes for deep space applications. Proceedings of the IEEE, 95(2007)11, 2142–2156.

    Article  Google Scholar 

  24. K. Andrews, S. Dolinar, D. Divsalar, et al.. Design of low density parity check codes for deep space applications. Pasadena, California, Jet Propulsion Laboratory and California Institute of Technology, 2004, IPN Progress Report, 42–159.

  25. J. Thorpe, K. Andrews, and S. Dolinal. Methodologies for designing LDPC codes using protographs and circulant. IEEE ISIT 2004, Chicago, IL, June 2004, 238.

  26. CCSDS 131.1-O-2. Low Density Parity Check Codes for Use in Near-Earth and Deep Space Applications. Washington, D. C., USA, Sep. 2007.

  27. Jeremy Thorpe. Low Density Parity Check (LDPC) Codes Constructed form Protographs. Pasadena, California, Jet Propulsion Laboratory and California Institute of Technology, 2003, JPL INP Progress Report, 42–154.

  28. D. Divsalar, C. Jones, S. Dolinar, et al.. Protograph based LDPC codes with minimum distance linearly growing with block size. IEEE Globecom, St. Louis, MO, Dec. 2005, 5.

  29. I. B. Djordjevic. LDPC-coded OAM modulation and multiplexing for deep-space and near-Earth optical communications. International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, CA, May 2011, 325–333.

  30. N. Andreadou, F. N. Pavlidou, S. Papaharalabos, et al.. Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes for deep space and high data rate applications. Satellite and Space Communications (IWSSC), Tuscany, Sep. 2009, 225–229.

  31. Zengran Wan, Yafeng Zhan, Wu Jianqiang, et al.. A receiver structure of joint LDPC decoding and synchronization for deep space communications. Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu, China, Sep. 2010, 1–5.

  32. O. B. Akan, J. Fang, and I. F. Akyildiz. Performance of TCP protocol in deep space communication networks. IEEE Communications Letters, 6(2002)11, 478–480.

    Article  Google Scholar 

  33. CCSDS 130.0-G-2. Overview of Space Communications Protocols, CCSDS, Washington, D. C., USA, 2007.

  34. Space Communications Protocol Standards. http://www.scps.org, 2010.

  35. CCSDS 211.1-B-3. Proximity-1 Space Link Protocol-Physical Layer. CCSDS, Washington, D. C., USA, March 2006.

    Google Scholar 

  36. W. Baek and D. C. Lee. Expected file delivery time of immediate NAK ARQ in CCSDS file delivery protocol. IEEE Aerospace Conference, Big Sky, MT, March 2003, 1509–1523.

  37. K. K. Choi and G. Maral. The implementation and validation of the new standard CCSDS file delivery protocol for multi-hooped space file transfer. IEEE Aerospace Conference, Snowmass, CO, March 1999, 153–163.

  38. A. Hooke and R. D. Jardins. Communication protocol standards for space data systems. Proceedings of the IEEE, 78(1990)7, 1295–1303.

    Article  Google Scholar 

  39. K. Lockhart and S. Palocsay. Performance analysis of space station communication protocols. IEEE/AIAA/NASA 9th Digital Avionics Systems Conference, Virginia Beach, VA, Oct. 1990, 419–424.

  40. Xiaoyou Yu, Fang Yu, Weibing Hou, et al.. State-of-the-art of transmission protocols for deep space communication networks. The First International Conference on Networking and Distributed Computing (ICNDC), Hangzhou, China, Oct. 2010, 123–127.

  41. L. Lefevre and J. Gelas. Towards interplanetary grids. Workshop on Next Generation Communication Infrastructure for Deep-Space Communications held in Conjunction with the Second International Conference on Space Mission Challenges for Information Technology, Pasadena, CA, July 2006, 5–7.

  42. A Hooke. The interplanetary internet. Communication of the ACM, 44(2001)9, 38–40.

    Article  Google Scholar 

  43. V. Cerf, S. Burleigh, and A. Hooke. Delay-tolerant network architecture: the evolving interplanetary internet. Internet-Draft, 2001.

  44. Ian F. Akyildiz, O. B. Akan, Chao Chen. et al.. The state of the art in interplanetary internet. IEEE Communications Magazine, 42(2004)7, 108–118.

    Article  Google Scholar 

  45. Interplanetary Internet Special Interest Group (IPNSIG). http://www.ipnsig.org, 2010.

  46. Kul Bhasin and Jeffrey L. Hayden. Space Internet architectures and technologies for NASA enterprises. International Journal of Satellite Communications, 2(2002)20, 311–332.

    Article  Google Scholar 

  47. Min Sheng, Ge Xu, and Xia Fang. The routing of interplanetary internet. China Communications, 3 (2006)6, 63–73.

    Google Scholar 

  48. P. Romano, P. Schrotter, O. Koudelka, et al.. Developments towards an Interplanetary Internet. Satellite and Space Communications (IWSSC), Tuscany, Sep. 2009, 310–314.

  49. M. Marchese. Interplanetary and pervasive communications. IEEE Aerospace and Electronic Systems Magazine, 26(2011)2, 12–18.

    Article  Google Scholar 

  50. C. Jentsch, A. Rathke, and O. Wallner. Interplanetary communication: A review of future missions. Satellite and Space Communications (IWSSC), Tuscany, Sep. 2009, 291–294.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Xie.

Additional information

Supported by the National Natural Science Foundation of China (No. 60972061, 60972062, and 61032004), and the National High Technology Research and Development Program of China (“863” Program) (No. 2008AA12A204).

Communication author: Xie Zhidong, born in 1984, male, Doctor degree.

About this article

Cite this article

Zhang, G., Xie, Z., Bian, D. et al. A survey of deep space communications. J. Electron.(China) 28, 145–153 (2011). https://doi.org/10.1007/s11767-011-0623-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-011-0623-8

Key words

CLC index

Navigation