Skip to main content
Log in

Partially blind extraction of continuous chaotic signals from a linear mixture

  • Published:
Journal of Electronics (China)

Abstract

In this paper, we address the problem of blind extraction and separation of a continuous chaotic signal from a linear mixture consisting of some chaotic signal and/or random signals. The problem of blind extraction is firstly formulated as a problem of the synchronization-based parameter estimation. Then an efficient least square based parameter estimation method is introduced to determine the desired extracting vector. The proposed blind signal extraction scheme is applicable to blind separation of chaotic signals by formulating the separation problem as the extraction of each chaotic source. Numerical simulation shows that the proposed approach can blindly extract and separate the desired chaotic signals and it is also robust to measurement noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Pope and R. E. Bogner. Blind signal separation I, linear, instantaneous combinations. Digital Signal Processing, (1996)6, 5–16.

    Google Scholar 

  2. K. J. Pope and R. E. Bogner. Blind signal separation II, linear, convolutive combinations. Digital Signal Processing, (1996)6, 17–28.

    Google Scholar 

  3. W. Hu and Z. Liu. Partially blind separation of continuous chaotic signals from a linear mixture. IET Signal Processing, 2(2008)4, 423–429.

    Article  Google Scholar 

  4. Paolo, B. Arturo, F. Luigi, and F. Mattia. Separation and synchronization of piecewise linear chaotic systems. Physical Review E, 74(2006)2, 026212-1–026212-11.

    Google Scholar 

  5. Y. V. Andreyev, A. S. Dmitriev, E. V. Efremova, and A. N. Anagnostopoulos. Separation of chaotic signal sum into components in the presence of noise. IEEE Transactions on Circuits and Systems, I: Fundamental Theory Applications, 50(2003)5, 613–618.

    Article  Google Scholar 

  6. T. Lo, H. Leung, and J. Litva. Separation of a mixture of chaotic signals. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, USA, May 1996, 1798–1801.

  7. M. Cifici and D. B. Williams. An optimal estimation algorithm for multiuser chaotic communications systems. IEEE International Symposium on Circuits and Systems, Scottsdale, Arizona, USA, May 2002, Vol. 1, 397–400.

  8. L. S. Tsimring and M. M. Sushchik. Multiplexing chaotic signals using synchronization. Physics Letters A, 213(1996)3, 155–166.

    Article  Google Scholar 

  9. Y. Wang and W. X. Zheng. Blind extraction of chaotic signal from an instantaneous linear mixture. Circuits and Systems II: Express Brief, 53(2006)2, 143–147.

    Article  Google Scholar 

  10. Z. Liu, X. H. Zhu, W. Hu, and F. Jiang. Principles of chaotic signal radar. International Journal of Bifurcation and Chaos, 17(2007)5, 1735–1739.

    Article  MATH  Google Scholar 

  11. J. H. Peng, E. J. Ding, M. Ding, and E. Yang. Synchronizing hyperchaos with a scalar transmitted signal. Physical Review Letters, 76(1996)6, 904–907.

    Article  Google Scholar 

  12. R. Konnur. Synchronization-based approach for estimating all model parameters of chaotic systems. Physical Review E, 67(2003)2,027204-1–027204-4.

    Article  Google Scholar 

  13. D. Huang. Adaptive-feedback control algorithm. Physical Review E, 73(2006)6, 66204-1–066204-8.

    Google Scholar 

  14. Y. Zhang, C. Tao, and Jack J. Jiang. Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization. Chaos, 16(2006)2, 023118-1–023118-8.

    Article  Google Scholar 

  15. C. Tao, Y. Zhang, and G. Du. Estimating model parameters by chaos synchronization. Physical Review E, 69(2004)3,036204-1–036204-5.

    Article  MathSciNet  Google Scholar 

  16. U. Parlitz and L. Junge. Synchronization-based parameter estimation from time series. Physical Review E, 54(1996)6, 6253–6259.

    Article  Google Scholar 

  17. J. L Breeden and A. Huebler. Reconstructing equations of motion from experimental data with unobserved variables. Physical Review A, 42(1990)10, 5817–5826.

    Article  MathSciNet  Google Scholar 

  18. J. Hu, S. Chen, and L. Chen. Adaptive control for anti-synchronization of Chua’s chaotic system. Physics Letters A, 339(2005)6, 455–460.

    Article  MATH  Google Scholar 

  19. S. Chen and B. L. Luk. Adaptive simulated annealing for optimization in signal processing applications. Signal Processing, 79(1999)1, 117–128.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Liu.

Additional information

Supported by the National Natural Science Foundation of China (No.60472059) and the Aeronautical Science Foundation of China (2008ZC 52026).

Communication author: Liu Zhong, born in 1963, male, Ph.D., Professor.

About this article

Cite this article

Hu, W., Liu, Z., Li, C. et al. Partially blind extraction of continuous chaotic signals from a linear mixture. J. Electron.(China) 26, 600–607 (2009). https://doi.org/10.1007/s11767-007-0212-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-007-0212-z

Key words

CLC index

Navigation