Skip to main content
Log in

On classical BCH codes and quantum BCH codes

  • Published:
Journal of Electronics (China)

Abstract

It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Mac Williams and N. J. A. Sloane. The Theory of Error-Correcting Codes, Amsterdam, North-Holland Publishing Company, 1977, 80–93.

    Google Scholar 

  2. H. Barnum, C. Crepéau, D. Gottesman, A. Smith, and A. Tapp. Authentication of quantum messages. Proceedings of the 43rd Annual IEEE Symposium on FOCS’02, Vancouver, B. C., Canada, Nov. 16–19, 2002, 449–458.

  3. Z. Li, Z. Ma, X. Lü, and D. G. Feng. A quantum public-key cryptosystem and message authenticatin scheme based on quantum CSS error correcting codes. Journal of Electronics & Information Technology, 28(2006)3, 537–541 (in Chinese). 李峥, 马智, 吕欣, 冯登国. 基于量子CSS 纠错码的量子公钥密码和消息认证. 电子与信息学报, 28(2006)3,537–541.

    Google Scholar 

  4. C. Crepéau, D. Gottesman, and A. Smith. Approximate quantum error-correcting codes and secret sharing schemes. EUROCRYPT’2005, LNCS 3494, 2005, 285–301

  5. X. Lü, Z. Ma, and D. G. Feng. Quantum secure direct communication using quantum Calderbank-Shor-Steane error correcting codes. Journal of Software, 17(2006)3, 509–515.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Guo, W. S. Cui, and Y. T. Zhang. Quantum signature based on quantum one-way map and the stabilized quantum code. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Qingdao, 2007, 463–466.

  7. A. M. Steane. Simple quantum error correcting codes. Phys. Rev. Lett., 77(1996), 793–797.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. R. Calderbank, E. M. Rains, P. W. Shors, and N. J. A. Sloane. Quantum error correction via codes over GF(4). IEEE Trans. on Inform. Theory, 44(1998)4, 1369–1387.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Grassl and T. Beth. Quantum BCH codes. In Proc. X. Int’l. Symp. on Theoretical Electrical Engineering, Magdeburg, Sept. 6–9, 1999, 207–212.

  10. A. M. Steane. Enlargement of Calderbank-Shor-Steane codes. IEEE Trans. Inform. Theory, 45(1999)7, 2492–2495.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Cohen, S. Encheva, and S. Litsyn. On binary constructions of quantum codes. IEEE Trans. Inform. Theory, 45(1999)7, 2495–2498.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Grassl and T. Beth. Cyclic quantum error-correcting codes and quantum shift registers. Proc. Royal Soc. London Series A, 456(2000)2003, 2689–2706.

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Y. Li. Quantum cyclic and constacyclic codes, IEEE Trans. Inform. Theory, 45(2004)3, 547–549.

    MathSciNet  MATH  Google Scholar 

  14. Z. Ma. On non-binary quantum BCH codes. The 3th Annual Conference on Theory and Applications of Models of Computation (TAMC’06), Beijing, May 15–20, LNCS 3959, 2006, 675–683.

  15. S. A. Aly, A. Klappenecker, and P. K. Sarvepalli. On quantum and classical BCH codes. arXiv:quant-ph/0604102, 2006.04.

  16. M. Grassl, T. Beth, and T. Pellizzari. Codes for the quantum erasure channel. Phys. Rev. A, 56(1997)1, 33–38.

    Article  MathSciNet  Google Scholar 

  17. A. Ashikhmin and E. Knill. Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory, 47(2001)7, 3065–3072.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Matssumoto and T. Uyematsu. Constructing quantum error-correcting codes for pm-state systems from classical error-correcting codes. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, E83-A(2000)10, 1878–1883.

    Google Scholar 

  19. A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli. Nonbinary stabilizer codes over finite fields. IEEE Trans. Inform. Theory, 52(2006)11, 4892–4914.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajie Xu.

Additional information

Supported by the National Natural Science Foundation of China (No.60403004), the Outstanding Youth Foundation of China (No.0612000500).

Communication author: Xu Yajie, born in 1984, female, graduate student.

About this article

Cite this article

Xu, Y., Ma, Z. & Zhang, C. On classical BCH codes and quantum BCH codes. J. Electron.(China) 26, 64–70 (2009). https://doi.org/10.1007/s11767-007-0120-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-007-0120-2

Key words

CLC index

Navigation