Skip to main content
Log in

Design of LDPC-coded BICM using a semi-Gaussian approximation

  • Published:
Journal of Electronics (China)

Abstract

This paper investigates analysis and design of Low-Density Parity-Check (LDPC) coded Bit Interleaved Coded Modulation (BICM) over Additive White Gaussian Noise (AWGN) channel. It focuses on Gray-labeled 8-ary Phase-Shift-Keying (8PSK) modulation and employs a Maximum A Posteriori (MAP) symbol-to-bit metric calculator at the receiver. An equivalent model of a BICM communication channel with ideal interleaving is presented. The probability distribution function of log-likelihood ratio messages from the MAP receiver can be approximated by a mixture of symmetric Gaussian densities. As a result semi-Gaussian approximation can be used to analyze the decoder. Extrinsic information transfer charts are employed to describe the convergence behavior of LDPC decoder. The design of irregular LDPC codes reduces to a linear programming problem on two-dimensional variable edge-degree distribution. This method allows irregular code design in a wider range of rates without any limit on the maximum node degree and can be used to design irregular codes having rates varying from 0.5275 to 0.9099. The designed convergence thresholds are only a few tenths, even a few hundredths of a decibel from the capacity limits. It is shown by Monte Carlo simulations that, when the block length is 30,000, these codes operate about 0.62–0.75 dB from the capacity limit at a bit error rate of 10−8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ungerboeck. Channel coding with multilevel/phase signals. IEEE Trans. on Inform. Theory, 28(1982)1, 55–67.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Imai, S. Hirakawa. A new multilevel coding method using error correcting codes. IEEE Trans. on Inform. Theory, 23(1977)3, 371–377.

    Article  MATH  Google Scholar 

  3. G. Caire, G. Tarrico, E. Biglieri. Bit-interleaved coded modulation. IEEE Trans. on Inform. Theory, 44(1998)3, 927–946.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. G. Gallager. Low-Density Parity Check Codes. [Ph.D. dissertation], MIT, 1960.

  5. S. Y. Chung, et al. On the design of low-density parity check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Letters, 5(2001)2, 58–60.

    Article  Google Scholar 

  6. T. J. Richardson, R. Urbanke. The capacity of low-density parity check codes under message passing decoding. IEEE Trans. on Inform. Theory, 47(2001)2, 599–618.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. J. Richardson, A. Shokrollahi, R. Urbanke. Design of capacity approaching irregular low-density parity check codes. IEEE Trans. on Inform. Theory, 47 (2001) 2, 619–637.

    Article  MathSciNet  MATH  Google Scholar 

  8. S.-Y. Chung, T. J. Richardson, R. L. Urbanke. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Trans. on Inform. Theory, 47(2001)2, 657–670.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Tuchler, J. Hagenauer. EXIT charts of irregular codes. in Proc. of Conference on Information Science and Systems, Princeton University, 2002, 20–22.

  10. J. Hou, et al. Multilevel coding with low-density parity-check component codes. Global Telecommunications Conference, San Antonio, Texas, 2001, 1016–1020.

  11. J. Hou, et al. Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes. IEEE Trans. on Inform. Theory, 49(2003)9, 2141–2155.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. ten Brink. Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans. on Commun., 49(2001)10, 1727–1737.

    Article  MATH  Google Scholar 

  13. H. Sankar, N. Sindhushayana, K. R. Narayanan. Design of low-density parity-check (LDPC) codes for high order constellations. Globe Telecommunications Conference, Dallas, Texas, 2004, 3113–3117.

  14. Yan Li, W. E. Ryan. Design of LDPC-coded modulation schemes. in Proc. of 3rd International Symp. on Turbo Codes, Brest, France, 2003, 551–554.

  15. M. Ardakani, Frank R. Kschischang. A more accurate one-dimensional analysis and design of irregular LDPC codes. IEEE Trans. on Commun., 52(2004)12, 2106–2114.

    Article  Google Scholar 

  16. Ingmar Land, et al. Bounds on information combining. IEEE Trans. on Inform. Theory, 51(2005)2, 612–619.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. R. Kschischang, et al. Factor graphs and the sumproduct algorithm. IEEE Trans. on Inform. Theory, 47(2001)2, 498–519.

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Hu, E. Eleftheriou, D.-M. Arnold, A. Dholakia. Efficient implementations of the sum-product algorithm for decoding LDPC codes. Globe Telecommunications Conference, San Antonio, Texas, 2001, 1036.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Jie.

About this article

Cite this article

Huang, J., Zhang, F. & Zhu, J. Design of LDPC-coded BICM using a semi-Gaussian approximation. J. of Electron.(China) 24, 174–180 (2007). https://doi.org/10.1007/s11767-005-0186-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-005-0186-7

Key words

CLC index

Navigation