Skip to main content
Log in

Symmetries and conservation laws associated with a hyperbolic mean curvature flow

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a hyperbolic mean curvature flow for convex evolving curves. Firstly, in view of Lie group analysis, infinitesimal generators, symmetry groups and an optimal system of symmetries of the considered hyperbolic mean curvature flow are presented. At the same time, some group invariant solutions are computed through reduced equations. In particular, we construct explicit solutions by applying the power series method. Furthermore, the convergence of the solutions of power series is certificated. Finally, conservation laws of the hyperbolic mean curvature flow are established via Ibragimov’s approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N H Asmar. Partial Differential Equations with Fourier Series and Boundary Value Problems, China Machine Press, Beijing, 2005.

    MATH  Google Scholar 

  2. G W Bluman, S C Anco. Symmetry and Integration Methods for Differential Equations, Springer, New York, 2004.

    MATH  Google Scholar 

  3. G W Bluman, S Kumei. Symmetries and Differential Equations, Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  4. K S Chou, W F Wo. On hyperbolic Gauss curvature flows, Journal of Differential Geometry, 2011, 89: 455–485.

    Article  MathSciNet  MATH  Google Scholar 

  5. B Gao, C F He. Analysis of a coupled short pulse system via symmetry method, Nonlinear Dynamics, 2017, 90(4): 2627–2636.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y N Grigoriev, V F Kovalev, S V Meleshko. Symmetries of integro-differential equations: with applications in mechanics and plasma physics, Springer, New York, 2010.

    Book  MATH  Google Scholar 

  7. B Gao, Y X Wang. Invariant Solutions and Nonlinear Self-Adjointness of the Two-Component Chaplygin Gas Equation, Discrete Dynamics in Nature and Society, 2019, 2019: 9609357.

    Article  MathSciNet  MATH  Google Scholar 

  8. C L He, S J Huang, X M Xing. Self-similar solutions to the hyperbolic mean curvature flow, Acta Mathematica Scientia, 2017, 37(3): 657–667.

    Article  MathSciNet  MATH  Google Scholar 

  9. C L He, D X Kong, K F Liu. Hyperbolic mean curvature flow, J Diff Equ, 2009, 246: 373–390.

    Article  MathSciNet  MATH  Google Scholar 

  10. N H Ibragimov. A new conservation theorem, J Math Anal Appl, 2007, 333: 311–328.

    Article  MathSciNet  MATH  Google Scholar 

  11. N H Ibragimov. Integrating factors, adjoint equations and Lagrangians, J Math Anal Appl, 2006, 318: 742–757.

    Article  MathSciNet  MATH  Google Scholar 

  12. N H Ibragimov. Nonlinear self-adjointness and conservation laws, J Phys A, 2011, 44: 432002.

    Article  MATH  Google Scholar 

  13. N H Ibragimov. Nonlinear self-adjointness in constructing conservation laws, Arch ALGA, 2011, 7: 1–99.

    Google Scholar 

  14. D X Kong, K F Liu, Z G Wang. Hyperbolic mean curvature flow: evolution of plane curves, Acta Mathematica Scientia, 2009, 29: 493–514.

    Article  MathSciNet  MATH  Google Scholar 

  15. D X Kong, Z G Wang. Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow, J Diff Equ, 2009, 247: 1694–1719.

    Article  MathSciNet  MATH  Google Scholar 

  16. K F Liu. Hyperbolic geometric flow, Lecture at International Conference of Elliptic and Parabolic Differential Equations, Hangzhou, August 20, 2007, Available at preprint webpage of Center of Mathematical Science, Zhejiang University.

  17. P G LeFloch, K Smoczyk. The hyperbolic mean curvature flow, Journal de Mathématiques Pures et Appliquées, 2008, 90(6): 591–614.

    Article  MathSciNet  MATH  Google Scholar 

  18. X Z Li, Z G Wang. The lifespan of classical solution to the Cauchy problem for the hyperbolic mean curvature flow, Scientia Sinica, 2017, 47(8): 953–968.

    MATH  Google Scholar 

  19. J Mao. Forced hyperbolic mean curvature flow, Kodai Mathematical Journal, 2012, 35(3): 500–522.

    Article  MathSciNet  MATH  Google Scholar 

  20. P J Olver. Applications of Lie Groups to Differential Equations, in: Grauate Texts in Mathematics, Springer, New York, 1993.

    Book  MATH  Google Scholar 

  21. W Rudin. Principles of Mathematical Analysis, China Machine Press, Beijing, 2004.

    MATH  Google Scholar 

  22. V A Silva. Lie point symmetries and conservation laws for a class of BBM-KdV systems, Communications in Nonlinear Science and Numerical Simulation, 2019, 69: 73–77.

    Article  MathSciNet  MATH  Google Scholar 

  23. J H Wang. Symmetries and solutions to geometrical flows, Science China-Mathematics, 2013, 56(8): 1689–1704.

    Article  MathSciNet  MATH  Google Scholar 

  24. Z G Wang. Symmetries and solutions of hyperbolic mean curvature flow with a constant forcing term, Applied mathematics and computation, 2014, 235: 560–566.

    Article  MathSciNet  MATH  Google Scholar 

  25. W W Wo, S X Yang, X L Wang. Group invariant solutions to a centro-affine invariant flow, Arch Math, 2017, 108: 495–505.

    Article  MathSciNet  MATH  Google Scholar 

  26. Z Zhou, C X Wu, J Mao. Hyperbolic curve flows in the plane, Journal of Inequalities and Applications, 2019, 52.

Download references

Acknowledgement

The authors thank Professor Dexing Kong for his wonderful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Gao.

Additional information

Supported by the Natural Science Foundation of Shanxi (202103021224068).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Yin, Ql. Symmetries and conservation laws associated with a hyperbolic mean curvature flow. Appl. Math. J. Chin. Univ. 37, 583–597 (2022). https://doi.org/10.1007/s11766-022-4311-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-022-4311-2

MR Subject Classification

Keywords

Navigation