Skip to main content
Log in

On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

We consider a generalization of Baum-Katz theorem for random variables satisfying some cover conditions. Consequently, we get the results for many dependent structures, such as END, ϱ*-mixing, ϱ-mixing and φ-mixing, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L E Baum, M Katz. Convergence rates in the law of large numbers, Trans Amer Math Soc, 1965, 120: 108–123.

    Article  MathSciNet  Google Scholar 

  2. R C Bradley. On the spectral density and asymptotic normality of weakly dependent random fields, J Theor Probab, 1992, 5(2): 355–373.

    Article  MathSciNet  Google Scholar 

  3. W Bryc, W Smolenski. Moment conditions for almost sure convergence of weakly correlated random variables, Proc of Amer Math Soc, 1993, 119(2): 629–635.

    Article  MathSciNet  Google Scholar 

  4. G H Cai. Strong law of large numbers for ϱ*-mixing sequences with different distributions, Disc Dynamics in Nat Soc, 2006, 2006: 1–7.

    Article  Google Scholar 

  5. P Chen, T C Hu, A Volodin. Limit behaviour of moving average processes under ϕ-mixing assumption, Statist Probab Lett, 2009, 79: 105–111.

    Article  MathSciNet  Google Scholar 

  6. Y Chen, A Chen, K Ng. The strong law of large numbers for extended negatively dependent random variables, J Appl Probab, 2010, 47(4): 908–922.

    Article  MathSciNet  Google Scholar 

  7. Y S Chow. Delayed sums and Borel summability of independent, identically distributed random variables, Bull Inst Math Acad Sinica, 1973, 1: 207–220.

    MathSciNet  MATH  Google Scholar 

  8. P Erdős. On a theorem of Hsu and Robbins, Ann Math Stat, 1949, 20: 286–291.

    Article  MathSciNet  Google Scholar 

  9. A Gut. Complete convergence for arrays, Periodica Math Hungar, 1992, 25: 51–75.

    Article  MathSciNet  Google Scholar 

  10. P L Hsu, H Robbins. Complete convergence and the law of large numbers, Proc Nat Acad Sci USA, 1947, 33: 25–31.

    Article  MathSciNet  Google Scholar 

  11. I A Ibragimov. Some limit theorems for stationary processes, Theory Probab Appl, 1962, 7: 349–382.

    Article  MathSciNet  Google Scholar 

  12. K Joag-Dev, F Proschan. Negative association of random variables with applications, The Ann Stat, 1983, 11: 286–295.

    Article  MathSciNet  Google Scholar 

  13. M Katz. The probability in the tail of a distribution, Ann Math Stat, 1963, 34: 312–318.

    Article  MathSciNet  Google Scholar 

  14. A Kuczmaszewska. On complete convergence in Marcinkiewicz-Zygmund type SLLN for negatively associated random variables, Acta Math Hungar, 2010, 128(1–2): 116–130.

    Article  MathSciNet  Google Scholar 

  15. A Kuczmaszewska, Z A Lagodowski. Convergence rates in the SLLN for some classes of dependent random fields, J Math Anal Appl, 2011, 380: 571–584.

    Article  MathSciNet  Google Scholar 

  16. A Kuczmaszewska. Convergence rate in the Petrov SLLN for dependent random variables, Acta Math Hungar, 2016, 148(1): 56–72.

    Article  MathSciNet  Google Scholar 

  17. Z A Lagodowski. An approach to complete convergence theorems for dependent random fields via application of Fuk-Nagaev inequality, J Math Anal Appl, 2016, 437: 380–395.

    Article  MathSciNet  Google Scholar 

  18. L Liu. Precise large deviations for dependent random variables with heavy tails, Stat Probab Lett, 2009, 79: 1290–1298.

    Article  MathSciNet  Google Scholar 

  19. C Miller. Three theorems on ϱ*-mixing random fields, J Theor Probab, 1994, 7: 867–882.

    Article  MathSciNet  Google Scholar 

  20. M Peligrad. Maximum of partial sums and an invariance principle for a class of weak dependent random variables, Proc Amer Math Soc, 1998, 126(4): 1181–1189.

    Article  MathSciNet  Google Scholar 

  21. M Peligrad, A Gut. Almost-sure results for a class of dependent random variables, J Theor Probab, 1999, 12(1): 87–104.

    Article  MathSciNet  Google Scholar 

  22. A R Pruss. Randomly sampled Riemann sums and complete convergence in the law of large numbers for a case without identical distribution, Proc Amer Math Soc, 1996, 124: 919–929.

    Article  MathSciNet  Google Scholar 

  23. Y A Rozanov, V A Volkonski. Some limit theorems for random function, Theory Probab, 1959, 4: 186–207.

    MathSciNet  Google Scholar 

  24. D H Qiu, P Y Chen, R G Antonini, A Volodin. On the complete convergence for arrays of rowwise extended negatively dependent random variables, J Korean Math Soc, 2013, 50(2): 379–392.

    Article  MathSciNet  Google Scholar 

  25. A Shen. Probability inequalities for END sequence and their applications, J Inequal Appl, 2011, 98: 1–12.

    MathSciNet  Google Scholar 

  26. A Shen. Complete convergence for weighted sums of END random variables and its applications to nonparametric regression models, J Nonparametric Stat, 2016, 28(4): 702–715.

    Article  MathSciNet  Google Scholar 

  27. A Shen, M Xue, W Wang. Complete convergence for weighted sums of extended negatively dependent random variables, Communications in Stat-Theory and Methods, 2017, 46(3): 1433–1444.

    Article  MathSciNet  Google Scholar 

  28. D Q Tuyen. A strong law for mixing random variables, Periodica Math Hung, 1999, 38: 131–136.

    Article  MathSciNet  Google Scholar 

  29. S Utev, M Peligrad. Maximal inequalities and an invariance principle for a class of weakly dependent random variables, J Theor Probab, 2003, 16(1): 101–115.

    Article  MathSciNet  Google Scholar 

  30. X Wang, S Hu, W Yang, Y Shen. On complete convergence for weighted sums of ϕ-mixing random variables, J Ineq Appl, 2010, 2010, Article ID: 372390, 13 pages, doi: https://doi.org/10.1155/2010/372390.

  31. X J Wang, X Q Li, S H Hu, X H Wang. On complete convergence for an extended negatively dependent sequence, Communications in Stat-Theory and Methods, 2014, 43: 2923–2937.

    Article  MathSciNet  Google Scholar 

  32. X J Wang, L L Zheng, C Xu, S H Hu. Complete consistency for the estimator of nonparameter regression models based on extended negatively dependent errors, Statistics: A Journal of Theoretical and Applied Stat, 2015, 49: 396–407.

    Article  Google Scholar 

  33. J F Wang, F B Lu. Inequalities of maximum of partial sums and weak convergence for a class of weak dependent random variables, Acta Math Sin, 2006, 22: 693–700.

    Article  MathSciNet  Google Scholar 

  34. Y F Wu, M Z Song, C H Wang. Complete moment convergence and mean convergence for arrays of rowwise extended negatively dependent random variables, The Scientific World Journal, 2014, 2014, Artical ID: 478612, 7 pages, https://doi.org/10.1155/2014/478612.

  35. X Xu, J G Yan. Complete moment convergence for randomly weighted sums of END sequences and its applications, Communications in Stat-Theory and Methods, 2021, 50(12): 2877–2899.

    Article  MathSciNet  Google Scholar 

  36. J G Yan. Strong Stability of a type of Jamison Weighted Sums for END Random Variables, J Korean Math Soc, 2017, 54(3): 897–907.

    Article  MathSciNet  Google Scholar 

  37. J G Yan. Almost sure convergence for weighted sums of WNOD random variables and its applications in nonparametric regression models, Communications in Stat-Theory and Methods, 2018, 47(16): 3893–3909.

    Article  Google Scholar 

  38. J G Yan. Complete Convergence and Complete Moment Convergence for Maximal Weighted Sums of Extended Negatively Dependent Random Variables, Acta Math Sinica, English Series, 2018, 34(10): 1501–1516.

    Article  MathSciNet  Google Scholar 

  39. J G Yan. On Complete Convergence in Marcinkiewicz-Zygmund Type SLLN for END Random Variables and Its Applications, Communications in Stat-Theory and Methods, 2019, 48(20): 5074–5098.

    Article  MathSciNet  Google Scholar 

  40. Y Zhang. Complete moment convergence for moving average process generated by ρ-mixing random variables, J Ineq Appl, 2015, 2015: 245, DOI: https://doi.org/10.1186/s13660-015-0766-5.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-gao Yan.

Additional information

Supported by the National Natural Science Foundation of China (11701403).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuczmaszewska, A., Yan, Jg. On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables. Appl. Math. J. Chin. Univ. 36, 342–353 (2021). https://doi.org/10.1007/s11766-021-3816-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-021-3816-4

Keywords

MR Subject Classification

Navigation