Skip to main content
Log in

Limit theorems for supremum of Gaussian processes over a random interval

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

Let {X(t), t ≥ 0} be a centered stationary Gaussian process with correlation r(t) such that 1 − r(t) is asymptotic to a regularly varying function. With T being a nonnegative random variable and independent of X(t), the exact asymptotics of P(supt∈[0,T] X(t) > x) is considered, as x → ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Adamović. Sur quelques propriétés des fonctions a croissance lente de Karamata I II, Mat Vesnik, 1966, 3(18): 123–136, 161–172.

    MathSciNet  MATH  Google Scholar 

  2. M Arendarczyk, K Dębicki. Exact asymptotics of supremum of a stationary Gaussian process over a random interval, Statist Probab Lett, 2012, 82(3): 645–652.

    Article  MathSciNet  MATH  Google Scholar 

  3. NH Bingham, CM Goldie, J LTeugels. Regular Variation, Cambridge University Press, Cambridge, 1987.

    Book  Google Scholar 

  4. K Dębicki, E Hashorva, L Ji. Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals, Extremes, 2014, 17(3): 411–429.

    Article  MathSciNet  MATH  Google Scholar 

  5. K Dębicki, B Zwart, SBorst. The supremum of a Gaussian process over a random interval, Statist Probab Lett, 2004, 68(3): 221–234.

    Article  MathSciNet  MATH  Google Scholar 

  6. W Feller. An Introduction to Probability Theory and Its Applications, Vol II, Wiley, New York, 1966.

    MATH  Google Scholar 

  7. J Karamata. Sur un mode de croissance régulière des fonctions, Mathematica (Cluj), 1930, 4: 38–53.

    Google Scholar 

  8. TJ Kozubowski, MM Meerschaert, K Podgorski. Fractional Laplace motion, Adv Appl Probab, 2006, 38(2): 451–464.

    Article  Google Scholar 

  9. MR Leadbetter, G Lindgren, H Rootzen. Extremes and related properties of sequences and processes, Springer, New York, 1983.

    Book  MATH  Google Scholar 

  10. J Pickands. Asymptotic properties of the maximum in a stationary Gaussian process, Trans Amer Math Soc, 1969, 145: 75–86.

    MathSciNet  MATH  Google Scholar 

  11. C Qualls, H Watanabe. Asymptotic properties of Gaussian processes, Ann Math Statist, 1972, 43(2): 580–596.

    Article  MathSciNet  MATH  Google Scholar 

  12. Z Tan, E Hashorva. Exact asymptotics and limit theorems for supremum of stationary χ-processes over a random interval, Stochastic Process Appl, 2013a, 123(8): 2983–2998.

    Google Scholar 

  13. Z Tan, E Hashorva. Exact tail asymptotics of the supremum of strongly dependent gaussian processes over a random interval, Lith Math J, 2013b, 53(1): 91–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-ming Lin.

Additional information

Supported by the Scientific Research Fund of Sichuan Provincial Education Department (12ZB082), the Scientific research cultivation project of Sichuan University of Science & Engineering (2013PY07), the Scientific Research Fund of Shanghai University of Finance and Economics (2017110080), and the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (2018QZJ01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Fm., Peng, Zx. Limit theorems for supremum of Gaussian processes over a random interval. Appl. Math. J. Chin. Univ. 33, 335–343 (2018). https://doi.org/10.1007/s11766-018-3438-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-018-3438-7

Keywords

MR Subject Classification

Navigation