Skip to main content
Log in

Testing long memory based on a discretely observed process

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of testing long memory for a continuous time process based on high frequency data. We provide two test statistics to distinguish between a semimartingale and a fractional integral process with jumps, where the integral is driven by a fractional Brownian motion with long memory. The small–sample performances of the statistics are evidenced by means of simulation studies. The real data analysis shows that the fractional integral process with jumps can capture the long memory of some financial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y Aït-Sahalia, J Jacod. Testing for jumps in a discretely observed process, Ann Statist, 2009, 37: 184–222.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y Aït-Sahalia, J Jacod. Is brownian motion necessary to model high-frequency data? Ann Statist, 2010, 38: 3093–3128.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y Aït-Sahalia, J Jacod. Testing whether jumps have finite or infinite activity, Ann Statist, 2011, 39: 1689–1719.

    Article  MathSciNet  MATH  Google Scholar 

  4. T G Andersen, T Bollerslev, F X Diebold, P Labys. Modeling and forecasting realized volatility, Econometrica, 2003, 71: 579–625.

    Article  MathSciNet  MATH  Google Scholar 

  5. F Bandi, J Russell. Microstructure noise, realized variance, and optimal sampling, Rev Econom Stud, 2008, 75: 339–369.

    Article  MathSciNet  MATH  Google Scholar 

  6. O Barndorff-Nielsen, J Corcuera, M Podolskij, J Woerner. Bipower variation for Gaussian processes with stationary increments, J Appl Probab, 2009, 46: 132–150.

    Article  MathSciNet  MATH  Google Scholar 

  7. O Barndorff-Nielsen, S Graversen, J Jacod, M Podolskij, N Shephard. A central limit theorem for realised power and bipower variations of continuous semimartingales, In: From Stochastic Calculus to Mathematical Finance, The Shiryaev Festschrift, Y Kabanov, R Liptser, J Stoyanov, eds, Springer, 2006: 33–69.

    Chapter  Google Scholar 

  8. O Barndorff-Nielsen, N Shephard. Econometrics of testing for jumps in financial economics using bipower variation, J Financial Econom, 2006, 4: 1–30.

    Article  MathSciNet  Google Scholar 

  9. O Barndorff-Nielsen, N Shephard, M Winkel. Limit theorems for multipower variation in the presence of jumps, Stochastic Process Appl, 2006, 116: 796–806.

    Article  MathSciNet  MATH  Google Scholar 

  10. J Beran, Y Feng, S Ghosh, R Kulik. Long-Memory Processes: Probabilistic Properties and Statistical Methods, Springer-Verlag, 2013.

    Book  MATH  Google Scholar 

  11. T Björk, H Hult. A note on Wick products and the fractional Black-Scholes model, Finance Stoch, 2005, 9: 197–209.

    Article  MathSciNet  MATH  Google Scholar 

  12. F Black, M Scholes. The pricing of options and corporate liabilities, J Polit Econ, 1973, 81: 637–654.

    Article  MathSciNet  MATH  Google Scholar 

  13. P Cheridito. Arbitrage in fractional brownian motion models, Finance Stoch, 2003, 7: 533–553.

    Article  MathSciNet  MATH  Google Scholar 

  14. R Cont, C Mancini. Nonparametric tests for pathwise properties of semimartingales, Bernoulli, 2011, 17: 781–813.

    Article  MathSciNet  MATH  Google Scholar 

  15. J Corcuera, D Nualart, J Woerner. Power variation of some integral long-memory processes, Bernoulli, 2006, 12: 713–735.

    Article  MathSciNet  MATH  Google Scholar 

  16. F Corsi, D Pirino, R Renò. Threshold bipower variation and the impact of jumps on volatility forecasting, J Econometrics, 2010, 159: 276–288.

    Article  MathSciNet  MATH  Google Scholar 

  17. S Dajcman. Time-varying long-range dependence in stock market returns and financial market disruptions-a case of eight European countries, Appl Econ Lett, 2012, 19: 953–957.

    Article  Google Scholar 

  18. F Delbaen, W Schachermayer. A general version of the fundamental theorem of asset pricing, Math Ann, 1994, 300: 463–520.

    Article  MathSciNet  MATH  Google Scholar 

  19. F Diebold, A Inoue. Long memory and regime switching, J Econometrics, 2001, 105: 131–159.

    Article  MathSciNet  MATH  Google Scholar 

  20. P Doukhan, G Oppenheim, M Taqqu. Theory and Applications of Long-Range Dependence, Birkhauser, 2003.

    MATH  Google Scholar 

  21. R J Elliott, J Van der Hoek. A general fractional white noise theory and applications to finance, Math Finance, 2003, 13: 301–330.

    Article  MathSciNet  MATH  Google Scholar 

  22. P Guasoni. No arbitrage under transaction costs, with fractional brownian motion and beyond, Math Finance, 2006, 16: 569–582.

    MathSciNet  MATH  Google Scholar 

  23. J Harrison, S Pliska. Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process Appl, 1981, 11: 215–260.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y Z Hu, B Øksendal. Fractional white noise calculus and applications to finance, Infin Dimens Anal Quantum Probab Relat Top, 2003, 6: 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  25. J Jacod, A Shiryaev. Limit Theorems for Stochastic Processes, Springer, 2003.

    Book  MATH  Google Scholar 

  26. R Jarrow, P Protter, H Sayit. No arbitrage without semimartingales, Ann Appl Probab, 2009, 19: 596–616.

    Article  MathSciNet  MATH  Google Scholar 

  27. B Y Jing, X B Kong, Z Liu. Modeling high-frequency financial data by pure jump processes, Ann Statist, 2012, 40: 759–784.

    Article  MathSciNet  MATH  Google Scholar 

  28. X B Kong, B Y Jing, C X Li. Is the Driving Force of a Continuous Process a Brownian Motion or Fractional Brownian Motion? J Math Finance, 2013, 3: 454–464.

  29. S Lee, P Mykland. Jumps in financial markets: A new nonparametric test and jump dynamics, Rev Financ Stud, 2008, 21: 2535–2563.

    Article  Google Scholar 

  30. G Y Liu, X S Zhang. Power variation of fractional integral processes with jumps, Statist Probab Lett, 2011, 81: 962–972.

    Article  MathSciNet  MATH  Google Scholar 

  31. G Y Liu, X S Zhang, Z Y Wei. Asymptotic properties for multipower variation of semimartingales and Gaussian stationary processes with jumps, J Statist Plann Inference, 2013, 143: 1307–1319.

    Article  MathSciNet  MATH  Google Scholar 

  32. T Mikosch, C Starica. Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects, Rev Econ Statist, 2004, 86: 378–390.

    MATH  Google Scholar 

  33. W Palma. Long-Memory Time Series: Theory and Methods, Wiley-Blackwell, 2007.

    Book  MATH  Google Scholar 

  34. S H Poon. A Practical Guide to Forecasting Financial Market Volatility, John Wiley & Sons, 2005.

    Google Scholar 

  35. S H Poon, C W J Granger. Forecasting volatility in financial markets: A review, J Econ Lit, 2003, 41: 478–539.

    Article  Google Scholar 

  36. S Rostek. Option Pricing in Fractional Brownian Markets, Springer, 2009.

    Book  MATH  Google Scholar 

  37. W Willinger, M S Taqqu, V Teverovsky. Stock market prices and long-range dependence, Finance Stoch, 1999, 3: 1–13.

    Article  MATH  Google Scholar 

  38. L Young. An inequality of the hölder type, connected with stieltjes integration, Acta Math, 1936, 67: 251–282.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-ying Liu.

Additional information

Supported by National NSFC(11501503), Natural Science Foundation of Jiangsu Province of China (BK20131340), China Postdoctoral Science Foundation (2014M560471, 2016T90534), QingLan Project of Jiangsu Province of China, Priority Academic Program Development of Jiangsu Higher Education Institutions (Applied Economics), Key Laboratory of Jiangsu Province (Financial Engineering Laboratory).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Gy., Zhang, Xs. & Zhang, Sb. Testing long memory based on a discretely observed process. Appl. Math. J. Chin. Univ. 31, 253–268 (2016). https://doi.org/10.1007/s11766-016-3342-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-016-3342-y

MR Subject Classification

Keywords

Navigation