Skip to main content
Log in

Cite this article

Abstract

Let AB(X) and BB(Y), MC be an operator on Banach space XY given by \(\left( \begin{gathered} AC \hfill \\ 0B \hfill \\ \end{gathered} \right) \). A generalized Drazin spectrum defined by σ gD (T) = {λ ∈ ℂ: T − λI is not generalized Drazin invertible} is considered in this paper. It is shown that

$\sigma _{gD} (A) \cup \sigma _{gD} (B) = \sigma _{gD} (M_C ) \cup W_{gD} (A,B,C)$

, where W gD (A,B,C) is a subset of σ gD (A) ∩ σ gD (B) and a union of certain holes in σ gD (MC). Furthermore, several sufficient conditions for σ gD (A) ∪ σ gD (B) = σ gD (MC) holds for every CB(Y,X) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. B A Barnes. Riesz points of upper triangular operator matrix, Proc Amer Math Soc, 2005, 133: 1343–1347.

    Article  MATH  MathSciNet  Google Scholar 

  2. X H Cao. Browder spectra for upper triangular operator matrices, J Math Anal Appl, 2008, 342: 477–484.

    Article  MATH  MathSciNet  Google Scholar 

  3. X H Cao, M Z Guo, B Meng. Drazin spectrum and Weyl’s theorem for operator matrices, J Math Res Exposition, 2006, 26: 413–422.

    MATH  MathSciNet  Google Scholar 

  4. X H Cao, M Z Guo, B Meng. Semi-Fredholm spectrum and Weyl’s theory for operator matrices, Acta Math Sinica, 2006, 22: 169–178.

    Article  MATH  MathSciNet  Google Scholar 

  5. X H Cao, M Z Guo, B Meng. Weyl’s theorem for upper triangular operator matrices, Linear Algebra Appl, 2005, 402: 61–73.

    Article  MATH  MathSciNet  Google Scholar 

  6. X L Chen, S F Zhang, H J Zhong. On the filling in holes problem of operator matrices, Linear Algebra Appl, 2009, 430: 558–563.

    Article  MATH  MathSciNet  Google Scholar 

  7. D S Djordjević, Perturbations of spectra of operator matrices, J Operator Theory, 2002, 48: 467–486.

    MATH  MathSciNet  Google Scholar 

  8. D S Djordjević, P S Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math J, 2001, 126: 617–634.

    Article  Google Scholar 

  9. D S Djordjević, Y M Wei. Additive results for the generalized Drazin inverse, J AustMath Soc, 2002, 73: 115–125.

    MATH  Google Scholar 

  10. S V Djordjević, Y M Han. Spectral continuity for operator matrices, Glasg Math J, 2001, 43: 487–490.

    MATH  MathSciNet  Google Scholar 

  11. S V Djordjević, H Zguitti. Essential point spectra of operator matrices though local spectral theory, J Math Anal Appl, 2008, 338: 285–291.

    Article  MATH  MathSciNet  Google Scholar 

  12. H K Du, J Pan. Perturbation of spectrums of 2 × 2 operator matrices, Proc Amer Math Soc, 1994, 121: 761–766.

    Article  MATH  MathSciNet  Google Scholar 

  13. J K Han, H Y Lee, W Y Lee. Invertible completions of 2×2 upper triangular operator matrices, Proc Amer Math Soc, 1999, 128: 119–123.

    Article  MathSciNet  Google Scholar 

  14. I S Hwang, W Y Lee. The boundedness below of 2×2 upper triangular operator matrices, Integral Equations Operator Theory, 2001, 39: 267–276.

    Article  MATH  MathSciNet  Google Scholar 

  15. J J Koliha. A generalized Drazin inverse, Glasg Math J, 1996, 38: 367–381.

    Article  MATH  MathSciNet  Google Scholar 

  16. J J Koliha, V Rakočević, Differentiability of the g-Drazin inverse, Studia Math, 2005, 168: 193–203.

    Article  MATH  MathSciNet  Google Scholar 

  17. W Y Lee. Weyl’s theorem for operator matrices, Integral Equations Operator Theory, 1998, 32: 319–331.

    Article  MATH  MathSciNet  Google Scholar 

  18. W Y Lee. Weyl spectra of operator matrices, Proc Amer Math Soc, 2000, 129: 131–138.

    Article  Google Scholar 

  19. Y Li, X H. Sun, H K Du. A note on the left essential spectra of operator matrices, Acta Math Sinica, 2007, 23: 2235–2240.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y Li, X H Sun, H K Du. The intersection of left(right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl, 2006, 418: 112–121.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y Li, H K Du. The intersection of essential approximate point spectra of operator matrices, J Math Anal Appl, 2006, 323: 1171–1183.

    Article  MATH  MathSciNet  Google Scholar 

  22. R A Lubansky. Koliha-Drazin invertibles form a regularity, Math Proc R Ir Acad, 2007, 107: 137–141.

    Article  MathSciNet  Google Scholar 

  23. M Mbekhta, V Müller. On the axiomatic theory of the spectrum, II, Studia Math, 1996, 119: 129–147.

    MATH  MathSciNet  Google Scholar 

  24. V Müller, V Kordula. On the axiomatic theory of spectrum, Studia Math, 1996, 119: 109–128.

    MATH  MathSciNet  Google Scholar 

  25. V Müller. Spectral Theory of linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, 139, Birkhauser Verlag, Basel, 2007.

    MATH  Google Scholar 

  26. H Y Zhang, H K Du. Browder spectra of upper-triangular operator matrices, J Math Anal Appl, 2006, 323: 700–707.

    Article  MATH  MathSciNet  Google Scholar 

  27. S F Zhang, H J Zhong. A note of Browder spectrum of operator matrices, J Math Anal Appl, 2008, 344: 927–931.

    Article  MATH  MathSciNet  Google Scholar 

  28. S F Zhang, H J Zhong, Q F Jiang. Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl, 2008, 429: 2067–2075

    Article  MATH  MathSciNet  Google Scholar 

  29. S F Zhang, Z Y Wu, H J Zhong. Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl, 2010, 433: 653–661.

    Article  MATH  MathSciNet  Google Scholar 

  30. S F Zhang, H J Zhang, J D Wu. Spectra of upper-triangular operator matrices, Acta Math Sinica (in Chinese), 2011, 54: 41–60.

    MATH  Google Scholar 

  31. S F Zhang, J D Wu. Samuel Multiplicites and Browder spectrum of operator matrices, Oper Matrices, 2012, 6: 169–179.

    Article  MathSciNet  Google Scholar 

  32. S F Zhang, Z Q Wu. Characterizations of perturbations of spectra of 2*2 upper triangular operator matrices, J Math Anal Appl, 2012, 392: 103–110.

    Article  MATH  MathSciNet  Google Scholar 

  33. Y N Zhang, H J Zhong, L Q Lin. Browder spectra and essential spectra of operator matrices, Acta Math Sinica, 2008, 24: 947–954.

    Article  MATH  MathSciNet  Google Scholar 

  34. H Zguitti. On the Drazin Inverse for upper triangular operator matrices, Bull Math Anal Appl, 2010, 2: 27–33.

    MathSciNet  Google Scholar 

  35. E H Zerouali, H Zguitti. Perturbation of spectra of operator matrices and local spectral theory, J Math Anal Appl, 2006, 324: 992–1005.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-fang Zhang.

Additional information

Supported by the National Natural Science Foundation of China (11301077, 1117131, 11171066 and 11226113), Foundation of the Education Department of Fujian Province (JA12074) and the Natural Science Foundation of Fujian Province (2012J05003).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sf., Zhong, Hj. & Lin, Lq. Generalized Drazin spectrum of operator matrices. Appl. Math. J. Chin. Univ. 29, 162–170 (2014). https://doi.org/10.1007/s11766-014-3142-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-014-3142-1

MR Subject Classification

Keywords

Navigation