Abstract
Let A ∈ B(X) and B ∈ B(Y), MC be an operator on Banach space X ⊕ Y given by \(\left( \begin{gathered} AC \hfill \\ 0B \hfill \\ \end{gathered} \right) \). A generalized Drazin spectrum defined by σ gD (T) = {λ ∈ ℂ: T − λI is not generalized Drazin invertible} is considered in this paper. It is shown that
, where W gD (A,B,C) is a subset of σ gD (A) ∩ σ gD (B) and a union of certain holes in σ gD (MC). Furthermore, several sufficient conditions for σ gD (A) ∪ σ gD (B) = σ gD (MC) holds for every C ∈ B(Y,X) are given.
This is a preview of subscription content,
to check access.References
B A Barnes. Riesz points of upper triangular operator matrix, Proc Amer Math Soc, 2005, 133: 1343–1347.
X H Cao. Browder spectra for upper triangular operator matrices, J Math Anal Appl, 2008, 342: 477–484.
X H Cao, M Z Guo, B Meng. Drazin spectrum and Weyl’s theorem for operator matrices, J Math Res Exposition, 2006, 26: 413–422.
X H Cao, M Z Guo, B Meng. Semi-Fredholm spectrum and Weyl’s theory for operator matrices, Acta Math Sinica, 2006, 22: 169–178.
X H Cao, M Z Guo, B Meng. Weyl’s theorem for upper triangular operator matrices, Linear Algebra Appl, 2005, 402: 61–73.
X L Chen, S F Zhang, H J Zhong. On the filling in holes problem of operator matrices, Linear Algebra Appl, 2009, 430: 558–563.
D S Djordjević, Perturbations of spectra of operator matrices, J Operator Theory, 2002, 48: 467–486.
D S Djordjević, P S Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math J, 2001, 126: 617–634.
D S Djordjević, Y M Wei. Additive results for the generalized Drazin inverse, J AustMath Soc, 2002, 73: 115–125.
S V Djordjević, Y M Han. Spectral continuity for operator matrices, Glasg Math J, 2001, 43: 487–490.
S V Djordjević, H Zguitti. Essential point spectra of operator matrices though local spectral theory, J Math Anal Appl, 2008, 338: 285–291.
H K Du, J Pan. Perturbation of spectrums of 2 × 2 operator matrices, Proc Amer Math Soc, 1994, 121: 761–766.
J K Han, H Y Lee, W Y Lee. Invertible completions of 2×2 upper triangular operator matrices, Proc Amer Math Soc, 1999, 128: 119–123.
I S Hwang, W Y Lee. The boundedness below of 2×2 upper triangular operator matrices, Integral Equations Operator Theory, 2001, 39: 267–276.
J J Koliha. A generalized Drazin inverse, Glasg Math J, 1996, 38: 367–381.
J J Koliha, V Rakočević, Differentiability of the g-Drazin inverse, Studia Math, 2005, 168: 193–203.
W Y Lee. Weyl’s theorem for operator matrices, Integral Equations Operator Theory, 1998, 32: 319–331.
W Y Lee. Weyl spectra of operator matrices, Proc Amer Math Soc, 2000, 129: 131–138.
Y Li, X H. Sun, H K Du. A note on the left essential spectra of operator matrices, Acta Math Sinica, 2007, 23: 2235–2240.
Y Li, X H Sun, H K Du. The intersection of left(right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl, 2006, 418: 112–121.
Y Li, H K Du. The intersection of essential approximate point spectra of operator matrices, J Math Anal Appl, 2006, 323: 1171–1183.
R A Lubansky. Koliha-Drazin invertibles form a regularity, Math Proc R Ir Acad, 2007, 107: 137–141.
M Mbekhta, V Müller. On the axiomatic theory of the spectrum, II, Studia Math, 1996, 119: 129–147.
V Müller, V Kordula. On the axiomatic theory of spectrum, Studia Math, 1996, 119: 109–128.
V Müller. Spectral Theory of linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, 139, Birkhauser Verlag, Basel, 2007.
H Y Zhang, H K Du. Browder spectra of upper-triangular operator matrices, J Math Anal Appl, 2006, 323: 700–707.
S F Zhang, H J Zhong. A note of Browder spectrum of operator matrices, J Math Anal Appl, 2008, 344: 927–931.
S F Zhang, H J Zhong, Q F Jiang. Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl, 2008, 429: 2067–2075
S F Zhang, Z Y Wu, H J Zhong. Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl, 2010, 433: 653–661.
S F Zhang, H J Zhang, J D Wu. Spectra of upper-triangular operator matrices, Acta Math Sinica (in Chinese), 2011, 54: 41–60.
S F Zhang, J D Wu. Samuel Multiplicites and Browder spectrum of operator matrices, Oper Matrices, 2012, 6: 169–179.
S F Zhang, Z Q Wu. Characterizations of perturbations of spectra of 2*2 upper triangular operator matrices, J Math Anal Appl, 2012, 392: 103–110.
Y N Zhang, H J Zhong, L Q Lin. Browder spectra and essential spectra of operator matrices, Acta Math Sinica, 2008, 24: 947–954.
H Zguitti. On the Drazin Inverse for upper triangular operator matrices, Bull Math Anal Appl, 2010, 2: 27–33.
E H Zerouali, H Zguitti. Perturbation of spectra of operator matrices and local spectral theory, J Math Anal Appl, 2006, 324: 992–1005.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (11301077, 1117131, 11171066 and 11226113), Foundation of the Education Department of Fujian Province (JA12074) and the Natural Science Foundation of Fujian Province (2012J05003).
Rights and permissions
About this article
Cite this article
Zhang, Sf., Zhong, Hj. & Lin, Lq. Generalized Drazin spectrum of operator matrices. Appl. Math. J. Chin. Univ. 29, 162–170 (2014). https://doi.org/10.1007/s11766-014-3142-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11766-014-3142-1