Advertisement

Hierarchical hesitant fuzzy K-means clustering algorithm

  • Na Chen
  • Ze-shui XuEmail author
  • Mei-mei Xia
Article

Abstract

Due to the limitation and hesitation in one’s knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm.

Keywords

Hesitant fuzzy set hierarchical clustering K-means clustering intuitionisitc fuzzy set 

MR Subject Classification

90B50 68T10 62H30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 20: 87–96.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    J C Bezdek. Pattern recognition with fuzzy objective function algorithms, Plenum, New York, 1981.CrossRefzbMATHGoogle Scholar
  3. [3]
    G Bordogna, M Pagani, G Pasi. A dynamical Hierarchical fuzzy clustering algorithm for information filtering, Stud Fuzziness Soft Comput, 2006, 197: 3–23.CrossRefGoogle Scholar
  4. [4]
    N Chen, Z S Xu, M M Xia. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis, Appl Math Model, 2013, 37: 2197–2211.CrossRefMathSciNetGoogle Scholar
  5. [5]
    D F Chen, Y J Lei, Y Tian. Clustering algorithm based on intuitionistic fuzzy equivalent relations, J Air Force Eng Univ, 2007, 8: 63–66.Google Scholar
  6. [6]
    Y H Dong, Y T Zhuang, K Chen, X Y Tai. A hierarchical clustering algorithm based on fuzzy graph connectedness, Fuzzy Sets and Systems, 2006, 157: 1760–1774.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    D Dubois, H Prade. Fuzzy Sets and Systems: Theory and Applications, New York: Academic Press, 1980.zbMATHGoogle Scholar
  8. [8]
    J L Fan, W Z Zhen, W X Xie. Suppressed fuzzy c-means clustering algorithm, Patt Recogn Lett, 2003, 24: 1607–1612.CrossRefzbMATHGoogle Scholar
  9. [9]
    J Han, M Kamber. Data Mining: Concepts and Techniques, Morgan Kaufmann, San Mateo, CA, 2000.Google Scholar
  10. [10]
    Z HilalInana, M Kuntalp. A study on fuzzy C-means clustering-based systems in automatic spike detection, Comput Biol Med, 2007, 37: 1160–1166.CrossRefGoogle Scholar
  11. [11]
    C Hwang, F C H Rhee. Uncertain fuzzy clustering: Interval type-2 fuzzy approach to C-means, IEEE T Fuzzy Syst, 2007, 15: 107–120.CrossRefGoogle Scholar
  12. [12]
    J T Jeng, C C Chuang, CW Tao. Interval competitive agglomeration clustering algorithm, Expert Syst Appl, 2010, 37: 6567–6578.CrossRefGoogle Scholar
  13. [13]
    S S Khan, A Ahmad. Cluster center initialization algorithm for K-means clustering, Patt Recogn Lett, 2004, 25: 1293–1302.CrossRefGoogle Scholar
  14. [14]
    J F Lu, J B Tang, Z M Tang, J Y Yang. Hierarchical initialization approach for K-means clustering, Patt Recogn Lett, 2008, 29: 787–795.CrossRefGoogle Scholar
  15. [15]
    F Masulli, S Rovetta. Soft transition from probabilistic to possibilistic fuzzy clustering, IEEE T Fuzzy Syst, 2006, 14: 516–527.CrossRefGoogle Scholar
  16. [16]
    S A Mingoti, J O Lima. Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms, European J Oper Res, 2006, 174: 1742–1759.CrossRefzbMATHGoogle Scholar
  17. [17]
    S Miyamoto. Information clustering based on fuzzy multisets, Inform Process Manag, 2003, 39: 195–213.CrossRefzbMATHGoogle Scholar
  18. [18]
    S Miyamoto. Remarks on basics of fuzzy sets and fuzzy multisets, Fuzzy Sets and Systems, 2005, 156: 427–431.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    M Meil, D Heckerman. An experimental comparison of several clustering and initialization methods, In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 1998, 386–395.Google Scholar
  20. [20]
    J M Pena, J A Lozano, P Larranaga. An empirical comparison of four initialization methods for the K-Means algorithm, Patt Recogn Lett, 1999, 20: 1027–1040.CrossRefGoogle Scholar
  21. [21]
    H F Pop, C Sarbu. The fuzzy hierarchical cross-clustering algorithm, improvements and comparative study, J Chem Inf Comp Sci, 1997, 37: 510–516.CrossRefGoogle Scholar
  22. [22]
    L Rueda, Y Q Zhang. Geometric visualization of clusters obtained from fuzzy clustering algorithms, Pattern Recogn, 2006, 39: 1415–1429.CrossRefzbMATHGoogle Scholar
  23. [23]
    C Sarbu, K Zehl, J W Einax. Fuzzy divisive hierarchical clustering of soil data using Gustafson-Kessel algorithm, Chemometer Intell Lab, 2007, 86: 121–129.CrossRefGoogle Scholar
  24. [24]
    Y Sun, Q M Zhu, Z X Chen. An iterative initial-points refinement algorithm for categorical data clustering, Patt Recogn Lett, 2002, 23: 875–884.CrossRefzbMATHGoogle Scholar
  25. [25]
    S Tokushige, H Yadohisa, K Inada. Crisp and fuzzy k-means clustering algorithms for multivariate functional data, Comput Statist, 2007, 22: 1–16.CrossRefMathSciNetGoogle Scholar
  26. [26]
    V Torra. Hesitant Fuzzy Sets, Int J Intell Syst, 2010, 25: 529–539.zbMATHGoogle Scholar
  27. [27]
    V Torra, Y Narukawa. On hesitant fuzzy sets and decision, the 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 2009, 1378–1382.Google Scholar
  28. [28]
    V Torra, S Miyamoto, S Lanau. Exploration of textual document archives using a fuzzy hierarchical clustering algorithm in the GAMBAL system, Inform Process Manag, 2005, 41: 587–598.CrossRefzbMATHGoogle Scholar
  29. [29]
    V Torra, S Miyamoto. On the consistency of a fuzzy C-means algorithm for multisets, Artif Intell Res Dev, IOS Press, 2005, 289–295.Google Scholar
  30. [30]
    M M Xia, Z S Xu. Hesitant fuzzy information aggregation in decision making, Internat J Approx Reason, 2011, 52: 395–407.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    Z S Xu. Intuitionistic fuzzy hierarchical clustering algorithms, J Syst Eng Electron, 2009, 20: 1–5.Google Scholar
  32. [32]
    Z S Xu, J J Wu. Intuitionistic fuzzy c-means clustering algorithms, J Syst Eng Electron, 2010, 21: 580–590.Google Scholar
  33. [33]
    Z S Xu, J Chen, J J Wu. Clustering algorithm for intuitionistic fuzzy sets, Inform Sci, 2008, 178: 3775–3790.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    Z S Xu, M M Xia. Distance and similarity measures for hesitant fuzzy sets, Inform Sci, 2011, 181: 2128–2138.CrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    Z S Xu. Intuitionistic fuzzy aggregation operators, IEEE T Fuzzy Syst, 2007, 15: 1179–1187.CrossRefGoogle Scholar
  36. [36]
    R R Yager. On the theory of bags, Int J Gen Syst, 1986, 13: 23–37.CrossRefMathSciNetGoogle Scholar
  37. [37]
    M S Yang, D C Lin. On similarity and inclusion measures between type-2 fuzzy sets with an application to clustering, Comput Math Appl, 2009, 57: 896–907.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    M S Yang, H M Shih. Cluster analysis based on fuzzy relations, Fuzzy Sets and Systems, 2001, 120: 197–212.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    L A Zadeh. Fuzzy sets, Inform Control, 1965, 8: 338–353.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    H M Zhang, Z S Xu, Q Chen. On clustering approach to intuitionistic fuzzy sets, Control Decis, 2007, 22: 882–888.zbMATHMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Economics and ManagementSoutheast UniversityNanjingChina
  2. 2.School of Applied MathematicsNanjing University of Finance and EconomicsNanjingChina
  3. 3.Business SchoolSichuan UniversityChengduChina
  4. 4.School of Economics and ManagementTsinghua UniversityBeijingChina

Personalised recommendations