Skip to main content
Log in

Dynamics of a nonlinear non-autonomous n-patches predator-prey dispersion-delay model

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear nonautonomous predator-prey dispersion model with continuous distributed delay is studied, where all parameters are time-dependent. In this system consisting of n-patches the prey species can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. It is proved that the system is uniformly persistent under any dispersion rate effect. Furthermore, some sufficient conditions are established for the existence of a unique almost periodic solution of the system. The example shows that the criteria in the paper are new, general and easily verifiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skellem J D. Random dispersal in theoretical population, Biometrika, 1951, 38: 196–216.

    MathSciNet  Google Scholar 

  2. He C. Almost Periodic Differential Equations, Beijing: Higher Education Publishing House, 1992, (in Chinese).

    Google Scholar 

  3. Freedman H I, Rai B, Waltman P. Mathematical model of population interactions with dispersal II: Differential survival in a change of habitat, J Math Anal Appl, 1986, 115: 140–154.

    Article  MATH  MathSciNet  Google Scholar 

  4. Beretta E, Solimano F. Global stability and periodic orbits for two patch predator-prey diffusion delay model, Math Biosci, 1987, 85: 153–183.

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuang Y, Takeuchi Y. Predator-prey dynamics in models of prey dispersal in two-patch environments, Math Biosci, 1994, 120:77–98.

    Article  MATH  MathSciNet  Google Scholar 

  6. Levin S A. Dispersion and population interaction, Amer Naturalist, 1974, 108: 207–228.

    Article  Google Scholar 

  7. Vance R R. The effect of dispersal on population stability in one-species, discrete space population growth models, Amer Naturalist, 1984, 123: 230–254.

    Article  Google Scholar 

  8. Beretta E, Takeuchi Y. Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delays, SIAM J Appl Math, 1988, 48: 627–651.

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuang Y. Delay Differential Equations with Applications in Population Dynamics, New York: Academic Press, 1993.

    MATH  Google Scholar 

  10. Xia Y, Cao J. Almost periodic solutions for an ecological model with infinite delays, Proc Edinburgh Math Soc, 2005, in press.

  11. Xia Y, Cao J. Almost periodicing in an ecological model with M-predators and N-preys by pure-delay type system, Nonlinear Dynamics, 2005, 39(3): 275–304.

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang Z Q, Wang Z C. Periodic solutions for nonautonomous predator-prey system with diffusion and time delay, Hiroshima Math J, 2001, 31(3): 371–381.

    MATH  MathSciNet  Google Scholar 

  13. Chen S H, Wang F, Yong T. Existence of positive periodic solution for nonautonomous predator-prey system with diffusion and time delay, J Comput Appl Math, 2003, 159: 375–386.

    Article  MATH  MathSciNet  Google Scholar 

  14. Song X, Chen L. Conditions for global attractivity of n-patches predator-prey dispersion-delay models, J Math Anal Appl, 2001, 253: 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  15. Ayala F J, Gilpin M E, Eherenfeld J G. Competition between species: theoretical models and experimental tests, Theor Popul Biol, 1973, 4: 331–356.

    Article  Google Scholar 

  16. Gilpin M E, Ayala F J. Global models of growth and competition, Proc Nat Acad Sci USA, 1973, 70: 3590–3593.

    Article  MATH  Google Scholar 

  17. Fan M, Wang K. Global periodic solutions of a generalized n-species Gilpin-Ayala competition model, Comput Math Appl, 2000, 40: 1141–1151.

    Article  MATH  MathSciNet  Google Scholar 

  18. Gilpin M E, Ayala F J. Schoener’s model and Drosophila competition, Theor Popul Biol, 1976, 9: 12–14.

    Article  Google Scholar 

  19. Li C R, Lu S J. The qualitative analysis of N-species periodic coefficient, nonlinear relation, prey-competition systems, Appl Math J Chinese Univ, 1997, 12(2): 147–156.

    MATH  MathSciNet  Google Scholar 

  20. Zhao J D, Chen W C. The qualitative analysis of N-species nonlinear prey-competition systems, Appl Math Comput, 2004, 149(2): 567–576.

    Article  MATH  MathSciNet  Google Scholar 

  21. Xia Y, Chen F, Chen A, et al. Existence and global attractivity of an almost periodic ecological model, Appl Math Comput, 2004, 157: 449–475.

    Article  MATH  MathSciNet  Google Scholar 

  22. Xia Y, Cao J, Huang Z, et al. Almost periodic solutions of n-species competitive system with feedback controls, J Math Anal Appl, 2004, 294: 503–522.

    Article  MATH  MathSciNet  Google Scholar 

  23. Xia Y, Lin M, Cao J. The existence of almost periodic solutions of certain perturbation systems, J Math Anal Appl, 2005, 310: 81–96.

    Article  MATH  MathSciNet  Google Scholar 

  24. Chen C, Chen F. Conditions for global attractivity of multispecies ecological competition-predator system with Holling III type functional response, Journal of Biomathematics, 2004, 19(2): 136–140.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Start-up Fund of Jimei University (ZB2004009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Ji, K. Dynamics of a nonlinear non-autonomous n-patches predator-prey dispersion-delay model. Appl. Math.- J. Chin. Univ. 22, 393–404 (2007). https://doi.org/10.1007/s11766-007-0403-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-007-0403-2

MR Subject Classification

Keywords

Navigation