Skip to main content
Log in

Local orthogonal transformation for acoustic waveguide

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In this paper, a local orthogonal transformation is created to transform the Helmholtz waveguide with curved interface to the one with a flat interface within the two-layer medium, and the Helmholtz equation u xx + u zz + κ 2 (x,z)u = 0 is transformed to \(V_{\dot x\dot x} + \alpha V_{\dot z\dot z} + \beta V_{\dot z} + \gamma V = 0\). Numerical results demonstrate that the transformation is more feasible. This transformation is particularly useful for the research on wave propagation in acoustic waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierce, A. D., Extension of the method of normal modes to sound propagation in an almost stratified medium Journal of the Acoustical Society of America, 1965, 37:19–27.

    Article  Google Scholar 

  2. Rutherford, S. R. and Hawker, K. E., Consistent coupled mode theory of sound for a class of nonseparable problems, Journal of the Acoustical Society of America, 1981, 70:554–564.

    Article  MATH  Google Scholar 

  3. Boyles, C. A., Coupled mode solution for a cylindrically symmetric oceanic wave guide with a range and depth dependent refractive index and a time varying rough sea surface, Journal of the Acoustical Society of America, 1983, 73:800–805.

    Article  MATH  Google Scholar 

  4. Evans, R., A coupled mode solution for acoustic propagation in a waveguide with stepwise variations of a penetrable bottom, Journal of the Acoustical Society of America, 1983, 74:188–195.

    Article  MATH  Google Scholar 

  5. Abrahamsson L. and Kreiss, H.-O., Numerical solution of the couple mode equations in duct acoustics, Journal of Computational Physics, 1994, 111:1–14.

    Article  MATH  Google Scholar 

  6. Jensen, F. B., Kuperman, W. A., Porter, M. B., et al., Computational Ocean Acoustics, AIP, New York, 1994.

    Google Scholar 

  7. Fishman, L., One-way wave propagation methods in direct and inverse scalar wave propagation modeling, Radio Science, 1993, 28:865–876.

    Google Scholar 

  8. Fishman, L., Direct and inverse wave propagation in the frequency domain via the Weyl operator symbol calculus, Vibration Control, Analysis, and Identification: 1995 Design Engineering technical Conference, ASME, New York, 1995, 84:923–930.

  9. Fishman, L., Gautesen, A. K. and Sun, Z., Uniform high-frequecy approximations of the square root Helmholtz operator symbol, Wave Motion, 1997, 26(2):127–161.

    Article  MATH  Google Scholar 

  10. Haines, A. J. and De Hoop, M. V., An invariant imbedding analysis of general wave scattering problems, J. Math. Phys., 1996, 37(8):3854–3881.

    Article  MATH  Google Scholar 

  11. Lu, Y. Y. and McLaughlin, J. R., The Riccati method for the Helmholtz equation, Journal of the Acoustical Society of America, 1996, 100(3):1432–1446.

    Article  Google Scholar 

  12. Tappert, F. D., The parabolic approximation method, In: Keller, J. B. and Papadakis, J. S., eds., Wave Propagation and Underwater Acoustics, Springer Verlag, Berlin, 1977.

    Google Scholar 

  13. Collins, M. D., Applications and time-domain solutions of higher-order parabolic equations in under-water acoustics, Journal of the Acoustical Society of America, 1989, 86(4):1097–1102.

    Article  Google Scholar 

  14. Lee, D. and Pierce, A. D., Parabolic equation development in recent decade, Journal of Computational Acoustics, 1995, 3:95–173.

    Article  Google Scholar 

  15. Lu, Y. Y., One-way large range step methods for Helmholtz waveguides, J. Comp. Phys., 1999, 152:231–250.

    Article  MATH  Google Scholar 

  16. Larsson, E. and Abrahamsson, L., Parabolic wave equation versus the Helmholtz equation in ocean acoustics, In: DeSanto, J. A., ed., Mathematics and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, 1998, 582–584.

    Google Scholar 

  17. Tessmer, E., Kosloff, D. and, Bethe, A., Elastic wave propagation simulation in the presence of surface topography, Geophysics Journal of International, 1992, 108:621–632

    Article  Google Scholar 

  18. Dougalis, V. A. and Kampanis, N. A., Finite element methods for the parabolic equation with interfaces, Journal of Computational Acoustics, 1996, 4:55–88.

    Article  Google Scholar 

  19. Evans, R., The flatted surface parabolic equation, Journal of the Acoustical Society of America, 1998, 104:2167–2173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Natural Science Foundation of Zhejiang Province (198016) and the Doctoral Fund of the Education Ministry of China (1999033516)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jianxin, Z. Local orthogonal transformation for acoustic waveguide. Appl. Math. Chin. Univ. 15, 443–452 (2000). https://doi.org/10.1007/s11766-000-0042-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-000-0042-3

1991 MR Subject Classification

Keywords

Navigation