Skip to main content
Log in

Physical impairments, activity limitations, and participation restrictions of childhood acute lymphoblastic leukemia survivors with and without hip osteonecrosis: a PETALE cohort study

  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Purpose

Long-term musculoskeletal complications represent a growing burden for survivors of childhood acute lymphoblastic leukemia (cALL). This study aimed to describe physical impairments, activity limitations, and participation restrictions in a high-risk subgroup of cALL survivors of the PETALE cohort.

Methods

This cross-sectional study, using observational data from the PETALE cohort, included a subgroup of survivors who presented high-risk criteria for late effects. Outcomes measures consisted of hip magnetic resonance imaging, maximal isometric muscle strength (MIMS) or torque (MIMT), range of motion (ROM), Near Tandem Balance (NTB), 6-Minute Walk Test (6MWT), Five Time Sit-to-Stand Test (FTSST), and health-related quality of life. Descriptive statistics and regression analyses were performed.

Results

Survivors (n = 97, 24.2 ± 6.7 years old) showed limited grip strength, FTSST, and NTB performance compared to reference values (p < 0.001). Thirteen participants (14.6%, 18 hips) had hip osteonecrosis (ON) (53.8% male). Higher severity hip ON was found in female survivors (66.7% vs. 22.2%). Survivors with hip ON had reduced hip external rotation ROM compared to those without (p < 0.05). Relationships were found between MIMS and ROM outcomes (r = 0.32, p < 0.01) and with 6MWT (r = 0.39–0.41, p < 0.001). Our multiple linear regression model explained 27.6% of the variance of the 6MWT.

Conclusions

Survivors in our subgroup had clinically significant physical impairments and activity limitations, and those with hip ON showed worst hip impairment outcomes.

Implications for Cancer Survivors

These findings emphasize the importance of long-term follow-up including physical therapy assessment to help early identification and management of physical impairments and activity limitations in survivors of cALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Restrictions apply to some or all the availability of data generated or analyzed during this study to preserve patient confidentiality. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided.

References

  1. Pui C-H, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43.

    Article  CAS  PubMed  Google Scholar 

  2. Statistique Canada. Les principales causes de décès, population totale, selon le groupe d’âge (Tableau 13–10–0394–01). Updated January 23, 2022. https://www150.statcan.gc.ca/t1/tbl1/fr/tv.action?pid=1310039401&pickMembers%5B0%5D=2.21&pickMembers%5B1%5D=3.1&cubeTimeFrame.startYear=2015&cubeTimeFrame.endYear=2019&referencePeriods=20150101%2C20190101. Accessed 23 Jan 2022.

  3. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360(26):2730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mulrooney DA, Hyun G, Ness KK, Bhakta N, Pui CH, Ehrhardt MJ, et al. The changing burden of long-term health outcomes in survivors of childhood acute lymphoblastic leukaemia: a retrospective analysis of the St Jude Lifetime Cohort Study. Lancet Haematol. 2019;6(6):e306–16.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32(12):1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ness KK, Hudson MM, Jones KE, Leisenring W, Yasui Y, Chen Y, et al. Effect of temporal changes in therapeutic exposure on self-reported health status in childhood cancer survivors. Ann Intern Med. 2017;166(2):89–98.

    Article  PubMed  Google Scholar 

  7. Ness KK, Hudson MM, Pui C-H, Green DM, Krull KR, Huang TT, et al. Neuromuscular impairments in adult survivors of childhood acute lymphoblastic leukemia: associations with physical performance and chemotherapy doses. Cancer. 2012;118(3):828–38.

    Article  PubMed  Google Scholar 

  8. Ness KK, Baker KS, Dengel DR, Youngren N, Sibley S, Mertens AC, et al. Body composition, muscle strength deficits and mobility limitations in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;49(7):975–81.

    Article  PubMed  Google Scholar 

  9. Rodwin RL, Chen Y, Yasui Y, Leisenring WM, Gibson TM, Nathan PC, et al. Longitudinal evaluation of neuromuscular dysfunction in long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer Epidemiol Biomark Prev. 2021. https://doi.org/10.1158/1055-9965.EPI-21-0154.

  10. Tonning Olsson I, Alberts NM, Li C, Ehrhardt MJ, Mulrooney DA, Liu W, et al. Pain and functional outcomes in adult survivors of childhood cancer: a report from the St. Jude Lifetime Cohort study. Cancer. 2021;127(10):1679–89.

    Article  CAS  PubMed  Google Scholar 

  11. Barr RD, Inglis D, Athale U, Jaworski M, Farncombe T, Gordon CL. Bone health in long-term survivors of pediatric acute lymphoblastic leukemia. An assessment by peripheral quantitative computed tomography. Pediatr Blood Cancer. 2021. https://doi.org/10.1002/pbc.29218.

  12. Organisation mondiale de la santé. Classification internationale du fonctionnement, du handicap et de la santé : CIF. 2001. https://apps.who.int/iris/bitstream/handle/10665/42418/9242545422_fre.pdf?sequence=1&isAllowed=y. Accessed 24 Jan 2022.

  13. Inaba H, Cao X, Chang JY, Karol SE, Panetta JC, Ness KK, et al. Incidence of hip and knee osteonecrosis and their associations with bone mineral density in children with acute lymphoblastic leukaemia. Br J Haematol. 2020;189(4):e177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kadan-Lottick NS, Dinu I, Wasilewski-Masker K, Kaste S, Meacham LR, Mahajan A, et al. Osteonecrosis in adult survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2008;26(18):3038–45.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Halton JM, Ma J, Babyn P, Matzinger MA, Kaste SC, Scharke M, et al. Reductions in bone mineral density are apparent early in children with prevalent osteonecrosis lesions following leukemia therapy. J Bone Miner Res. 2023. https://doi.org/10.1002/jbmr.4870.

  16. Rao SS, El Abiad JM, Puvanesarajah V, Levin AS, Jones LC, Morris CD. Osteonecrosis in pediatric cancer survivors: epidemiology, risk factors, and treatment. Surg Oncol. 2019;28:214–21.

    Article  PubMed  Google Scholar 

  17. Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, Cheng C, et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;117(8):2340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barr RD, Sala A. Osteonecrosis in children and adolescents with cancer. Pediatr Blood Cancer. 2008. https://doi.org/10.1002/pbc.21405.

  19. Elmantaser M, Stewart G, Young D, Duncan R, Gibson B, Ahmed SF. Skeletal morbidity in children receiving chemotherapy for acute lymphoblastic leukaemia. Arch Dis Child. 2010;95(10):805–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mattano LA Jr, Sather HN, Trigg ME, Nachman JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children’s Cancer Group. J Clin Oncol: official J Am Soc Clinical Oncol. 2000;18(18):3262–72.

    Article  Google Scholar 

  21. Kaste SC, Pei D, Cheng C, Neel MD, Bowman WP, Ribeiro RC, et al. Utility of early screening magnetic resonance imaging for extensive hip osteonecrosis in pediatric patients treated with glucocorticoids. J Clin Oncol: official J Am Soc Clinical Oncol. 2015;33(6):610–5.

    Article  Google Scholar 

  22. Padhye B, Dalla-Pozza L, Little D, Munns C. Incidence and outcome of osteonecrosis in children and adolescents after intensive therapy for acute lymphoblastic leukemia (ALL). Cancer Med. 2016;5(5):960–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeFeo BM, Kaste SC, Li Z, Brinkman TM, Neel MD, Srivastava DK, et al. Long-term functional outcomes among childhood survivors of cancer who have a history of osteonecrosis. Phys Ther. 2020. https://doi.org/10.1093/ptj/pzz176.

  24. Kaste SC, Karimova EJ, Neel MD. Osteonecrosis in children after therapy for malignancy. AJR Am J Roentgenol. 2011;196(5):1011–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burger B, Beier R, Zimmermann M, Beck JD, Reiter A, Schrappe M. Osteonecrosis: a treatment related toxicity in childhood acute lymphoblastic leukemia (ALL)–experiences from trial ALL-BFM 95. Pediatr Blood Cancer. 2005;44(3):220–5.

    Article  PubMed  Google Scholar 

  26. te Winkel ML, Pieters R, Hop WC, de Groot-Kruseman HA, Lequin MH, van der Sluis IM, et al. Prospective study on incidence, risk factors, and long-term outcome of osteonecrosis in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2011;29(31):4143–50.

    Article  Google Scholar 

  27. Mont MA, Zywiel MG, Marker DR, McGrath MS, Delanois RE. The natural history of untreated asymptomatic osteonecrosis of the femoral head: a systematic literature review. J Bone Joint Surg Am. 2010;92(12):2165–70.

    Article  PubMed  Google Scholar 

  28. Marchese VG, Connolly BH, Able C, Booten AR, Bowen P, Porter BM, et al. Relationships among severity of osteonecrosis, pain, range of motion, and functional mobility in children, adolescents, and young adults with acute lymphoblastic leukemia. Phys Ther. 2008;88(3):341–50.

    Article  PubMed  Google Scholar 

  29. Mereddy PKR, Sunderamoorthy D. Avascular necrosis of the femoral head 8 years after posterior hip dislocation. Injury. 2008;39(7):823.

    Article  PubMed  Google Scholar 

  30. Lavernia CJ, Sierra RJ, Grieco FR. Osteonecrosis of the femoral head. J Am Acad Orthop Surg. 1999;7(4):250–61.

    Article  CAS  PubMed  Google Scholar 

  31. Amin N, Kinsey S, Feltbower R, Kraft J, Whitehead E, Velangi M, et al. British OsteoNEcrosis Study (BONES) protocol: a prospective cohort study to examine the natural history of osteonecrosis in older children, teenagers and young adults with acute lymphoblastic leukaemia and lymphoblastic lymphoma. BMJ Open. 2019;9(5):e027204.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Svehlík M, Kraus T, Steinwender G, Zwick EB, Linhart WE. Pathological gait in children with Legg-Calvé-Perthes disease and proposal for gait modification to decrease the hip joint loading. Int Orthop. 2012;36(6):1235–41.

    Article  PubMed  Google Scholar 

  33. Krause DA, Jacobs RS, Pilger KE, Sather BR, Sibunka SP, Hollman JH. Electromyographic analysis of the gluteus medius in five weight-bearing exercises. J Strength Cond Res. 2009;23(9):2689–94.

    Article  PubMed  Google Scholar 

  34. Marcoux S, Drouin S, Laverdiere C, Alos N, Andelfinger GU, Bertout L, et al. The PETALE study: late adverse effects and biomarkers in childhood acute lymphoblastic leukemia survivors. Pediatr Blood Cancer. 2017. https://doi.org/10.1002/pbc.26361.

  35. Bolduc N, Roy S, Blouin C. Bolduc N, Roy S, Blouin C. Le protocole d’utilisation de l’inclinomètre. Institut de réadaptation en déficience physique de Québec; 2009.

  36. Charlton PC, Mentiplay BF, Pua Y-H, Clark RA. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion. J Sci Med Sport. 2015;18(3):262–7.

    Article  PubMed  Google Scholar 

  37. Clapis PA, Davis SM, Davis RO. Reliability of inclinometer and goniometric measurements of hip extension flexibility using the modified Thomas test. Physiother Theory Pract. 2008;24(2):135–41.

    Article  PubMed  Google Scholar 

  38. Hebert LJ, Maltais DB, Lepage C, Saulnier J, Crete M. Hand-held dynamometry isometric torque reference values for children and adolescents. Pediatr Phys Ther. 2015;27(4):414–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hebert LJ, Maltais DB, Lepage C, Saulnier J, Crete M, Perron M. Isometric muscle strength in youth assessed by hand-held dynamometry: a feasibility, reliability, and validity study. Pediatr Phys Ther. 2011;23(3):289–99.

    Article  PubMed  Google Scholar 

  40. Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. 1985;66(2):69–74.

    CAS  PubMed  Google Scholar 

  41. Butler AA, Menant JC, Tiedemann AC, Lord SR. Age and gender differences in seven tests of functional mobility. J Neuroeng Rehabil. 2009;6(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Medina-Mirapeix F, Vivo-Fernández I, López-Cañizares J, García-Vidal JA, Benítez-Martínez JC, del Baño-Aledo ME. Five times sit-to-stand test in subjects with total knee replacement: reliability and relationship with functional mobility tests. Gait Posture. 2018;59:258–60.

    Article  PubMed  Google Scholar 

  43. Bohannon RW, Bubela DJ, Magasi SR, Wang Y-C, Gershon RC. Sit-to-stand test: Performance and determinants across the age-span. Isokinet Exerc Sci. 2010;18(4):235–40.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM. Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J (Clin Res Ed). 1982;284(6329):1607–8.

    Article  CAS  PubMed  Google Scholar 

  45. Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93(4):529–41.

    Article  PubMed  Google Scholar 

  46. Schmidt K, Vogt L, Thiel C, Jager E, Banzer W. Validity of the six-minute walk test in cancer patients. Int J Sports Med. 2013;34(7):631–6.

    Article  CAS  PubMed  Google Scholar 

  47. Hartman A, Hop W, Takken T, Pieters R, van den Heuvel-Eibrink M. Motor performance and functional exercise capacity in survivors of pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60(3):494–9.

    Article  PubMed  Google Scholar 

  48. Statement ATS. Am J Respir Crit Care Med. 2002;166(1):111–7.

    Article  Google Scholar 

  49. Niinimäki T, Niinimäki J, Halonen J, Hänninen P, Harila-Saari A, Niinimäki R. The classification of osteonecrosis in patients with cancer: validation of a new radiological classification system. Clin Radiol. 2015;70(12):1439–44.

    Article  PubMed  Google Scholar 

  50. Inaba H, Varechtchouk O, Neel MD, Ehrhardt MJ, Metzger ML, Karol SE, et al. Whole-joint magnetic resonance imaging to assess osteonecrosis in pediatric patients with acute lymphoblastic lymphoma. Pediatr Blood Cancer. 2020;67(8):e28336.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Portera MV, Karol SE, Smith C, Yang W, Cheng C, Neel MD, et al. Osteonecrosis is unrelated to hip anatomy in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2017. https://doi.org/10.1002/pbc.26407.

  52. Karimova EJ, Rai SN, Howard SC, Neel M, Britton L, Pui CH, et al. Femoral head osteonecrosis in pediatric and young adult patients with leukemia or lymphoma. J Clin Oncol. 2007;25(12):1525–31.

    Article  PubMed  Google Scholar 

  53. Varni JW, Burwinkle TM, Katz ER, Meeske K, Dickinson P. The PedsQL in pediatric cancer: reliability and validity of the Pediatric Quality of Life Inventory Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module. Cancer. 2002;94(7):2090–106.

    Article  PubMed  Google Scholar 

  54. Robert RS, Paxton RJ, Palla SL, Yang G, Askins MA, Joy SE, et al. Feasibility, reliability, and validity of the Pediatric Quality of Life Inventory ™ generic core scales, cancer module, and multidimensional fatigue scale in long-term adult survivors of pediatric cancer. Pediatr Blood Cancer. 2012;59(4):703–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tomlinson D, Hinds PS, Ethier MC, Ness KK, Zupanec S, Sung L. Psychometric properties of instruments used to measure fatigue in children and adolescents with cancer: a systematic review. J Pain Symptom Manage. 2013;45(1):83–91.

    Article  PubMed  Google Scholar 

  56. Christen S, Roser K, Mulder RL, Ilic A, Lie HC, Loonen JJ, et al. Recommendations for the surveillance of cancer-related fatigue in childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. J Cancer Surviv. 2020;14(6):923–38.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Topp CW, Østergaard SD, Søndergaard S, Bech P. The WHO-5 Well-Being Index: a systematic review of the literature. Psychother Psychosom. 2015;84(3):167–76.

    Article  PubMed  Google Scholar 

  58. Soucie JM, Wang C, Forsyth A, Funk S, Denny M, Roach KE, et al. Range of motion measurements: reference values and a database for comparison studies. Haemophilia. 2011;17(3):500–7.

    Article  CAS  PubMed  Google Scholar 

  59. Gilchrist L, Tanner L. Gait patterns in children with cancer and vincristine neuropathy. Pediatr Phys Ther. 2016;28(1):16–22.

    Article  PubMed  Google Scholar 

  60. Wright MJ, Halton JM, Barr RD. Limitation of ankle range of motion in survivors of acute lymphoblastic leukemia: a cross-sectional study. Med Pediatr Oncol. 1999;32(4):279–82.

    Article  CAS  PubMed  Google Scholar 

  61. Bohannon RW. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997;78(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  62. Mathiowetz V, Wiemer DM, Federman SM. Grip and pinch strength: norms for 6- to 19-year-olds. Am J Occup Ther. 1986;40(10):705–11.

    Article  CAS  PubMed  Google Scholar 

  63. Gibbons WJ, Fruchter N, Sloan S, Levy RD. Reference values for a multiple repetition 6-minute walk test in healthy adults older than 20 years. J Cardiopulm Rehabil. 2001;21(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  64. Ulrich S, Hildenbrand FF, Treder U, Fischler M, Keusch S, Speich R, et al. Reference values for the 6-minute walk test in healthy children and adolescents in Switzerland. BMC Pulm Med. 2013;13(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Varni JW, Limbers CA. The PedsQL™ Multidimensional Fatigue Scale in young adults: feasibility, reliability and validity in a University student population. Qual Life Res. 2008;17(1):105–14.

    Article  PubMed  Google Scholar 

  66. Varni JW, Limbers CA. The PedsQL 40 Generic Core Scales Young Adult Version: feasibility, reliability and validity in a university student population. J Health Psychol. 2009;14(4):611–22.

    Article  PubMed  Google Scholar 

  67. Bagwell JJ, Bauer L, Gradoz M, Grindstaff TL. The reliability of FABER test hip range of motion measurements. Int J Sports Phys Ther. 2016;11(7):1101–5.

    PubMed  PubMed Central  Google Scholar 

  68. Beulertz J, Bloch W, Prokop A, Rustler V, Fitzen C, Herich L, et al. Limitations in ankle dorsiflexion range of motion, gait, and walking efficiency in childhood cancer survivors. Cancer Nurs. 2016;39(2):117–24.

    Article  PubMed  Google Scholar 

  69. Akyay A, Olcay L, Sezer N, Atay SC. Muscle strength, motor performance, cardiac and muscle biomarkers in detection of muscle side effects during and after acute lymphoblastic leukemia treatment in children. J Pediatr Hematol Oncol. 2014;36(8):594–8.

    Article  CAS  PubMed  Google Scholar 

  70. Hoffman MC, Mulrooney DA, Steinberger J, Lee J, Baker KS, Ness KK. Deficits in physical function among young childhood cancer survivors. J Clin Oncol. 2013;31(22):2799–805.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barr R, Nayiager T, Gordon C, Marriott C, Athale U. Body composition and bone health in long-term survivors of acute lymphoblastic leukaemia in childhood and adolescence: the protocol for a cross-sectional cohort study. BMJ Open. 2015;5(1):e006191.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hayek S, Gibson TM, Leisenring WM, Guida JL, Gramatges MM, Lupo PJ, et al. Prevalence and predictors of frailty in childhood cancer survivors and siblings: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2020;38(3):232–47.

    Article  PubMed  Google Scholar 

  73. Ness KK, Kirkland JL, Gramatges MM, Wang Z, Kundu M, McCastlain K, et al. Premature physiologic aging as a paradigm for understanding increased risk of adverse health across the lifespan of survivors of childhood cancer. J Clin Oncol. 2018;36(21):2206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ness KK, Krull KR, Jones KE, Mulrooney DA, Armstrong GT, Green DM, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude Lifetime cohort study. J Clin Oncol. 2013;31(36):4496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yallop K, McDowell H, Koziol-McLain J, Reed PW. Self-reported psychosocial wellbeing of adolescent childhood cancer survivors. Eur J Oncol Nurs. 2013;17(6):711–9.

    Article  PubMed  Google Scholar 

  76. Weinstein AG, Henrich CC, Armstrong GT, Stratton KL, King TZ, Leisenring WM, et al. Roles of positive psychological outcomes in future health perception and mental health problems: a report from the Childhood Cancer Survivor Study. Psychooncology. 2018;27(12):2754–60.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lamore K, Bourdeau C, Alos N, Bertout L, Curnier D, Drouin S, et al. Contributing factors of unmet needs among young adult survivors of childhood acute lymphoblastic leukemia with comorbidities. J Adolesc Young Adult Oncol. 2020;10(4):462–75.

    Article  PubMed  Google Scholar 

  78. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.

    Article  CAS  PubMed  Google Scholar 

  79. Marchese VG, Chiarello LA. Relationships between specific measures of body function, activity, and participation in children with acute lymphoblastic leukemia. Rehab Oncol. 2004;22(2):5–9.

    Google Scholar 

  80. van de Velde ME, Kaspers GL, Abbink FCH, Wilhelm AJ, Ket JCF, van den Berg MH. Vincristine-induced peripheral neuropathy in children with cancer: a systematic review. Crit Rev Oncol Hematol. 2017;114:114–30.

    Article  PubMed  Google Scholar 

  81. Nadeau G, Ouimet-Grennan E, Aaron M, Drouin S, Bertout L, Shalmiev A, et al. Identification of genetic variants associated with skeletal muscle function deficit in childhood acute lymphoblastic leukemia survivors. Pharmgenomics Pers Med. 2019;12:33–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Riley PO, Croce UD, Casey KD. Propulsive adaptation to changing gait speed. J Biomech. 2001;34(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  83. Spinoso DH, Bellei NC, Marques NR, Navega MT. Quadriceps muscle weakness influences the gait pattern in women with knee osteoarthritis. Adv Rheumat. 2018;58(1):26.

    Article  Google Scholar 

  84. Tully EA, Fotoohabadi MR, Galea MP. Sagittal spine and lower limb movement during sit-to-stand in healthy young subjects. Gait Posture. 2005;22(4):338–45.

    Article  PubMed  Google Scholar 

  85. Marchese VG, McEvoy CS, Brown H, Greiner R, Demski M, Ginsberg JP. Exploring factors that influence childhood cancer survivors’ choice of occupation and choice to attend college. Rehab Oncol. 2014;32(4):23–8.

    Google Scholar 

  86. Tanner L, Keppner K, Lesmeister D, Lyons K, Rock K, Sparrow J. Cancer rehabilitation in the pediatric and adolescent/young adult population. Semin Oncol Nurs. 2020;36(1):150984.

    Article  PubMed  Google Scholar 

  87. Marchese VG, Chiarello LA, Lange BJ. Effects of physical therapy intervention for children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42(2):127–33.

    Article  PubMed  Google Scholar 

  88. Morin M, Duchesne E, Bernier J, Blanchette P, Langlois D, Hébert LJ. What is known about muscle strength reference values for adults measured by hand-held dynamometry: a scoping review. Arch Rehabil Res Clin Transl. 2021. https://doi.org/10.1016/j.arrct.2021.100172.

Download references

Acknowledgements

We would like to extend our thanks to the participants and their families for agreeing to be part of this study. We also acknowledge the special contributions of Marie Jutras, Chantal Lapointe, Anny Condé, and Josie Pilon for their clinical expertise in physical therapy and participation in data collection.

Funding

This study was supported by the Canadian Institute of Health Research (Team Grant: Childhood Cancer – Late Effects of Treatment, 201106), CHU Sainte-Justine Foundation, Ontario Institute for Cancer Research, Pediatric Oncology Group of Ontario, Hospital for Sick Kids Foundation, Canadian Cancer Society, Terry Fox Foundation, Cancer Research Society (La Société de Recherche sur le Cancer), Université de Montréal (École de réadaptation, Études supérieures et post-doctorales), and Ordre professionnel de la physiothérapie du Québec.

Author information

Authors and Affiliations

Authors

Contributions

A.B. completed the literature review. From the PETALE cohort study design, A.B. elaborated the design of this specific study, conducted the analyses and wrote the manuscript. D.K., L.J.H., and M.F. supervised all the work A.B. completed by providing recommendations and reviewing the manuscript according to their respective expertise. N.A., C.L., and D.S. designed the PETALE cohort study in which this study takes place and supervised the data collection. S.S., D.C., M-C.M., and R.E-J. were responsible for the data collection of the PETALE study in their respective expertise domain. All authors have contributed to the manuscript in significant ways, have reviewed and agreed upon the manuscript content.

Corresponding author

Correspondence to Annie Brochu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 68 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brochu, A., Kairy, D., Alos, N. et al. Physical impairments, activity limitations, and participation restrictions of childhood acute lymphoblastic leukemia survivors with and without hip osteonecrosis: a PETALE cohort study. J Cancer Surviv (2024). https://doi.org/10.1007/s11764-024-01585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11764-024-01585-4

Keywords

Navigation