An ontology-based collaborative business service selection: contributing to automatic building of collaborative business process

  • Wenxin Mu
  • Frederick Benaben
  • Herve Pingaud
Special Issue Paper


With worldwide inter-enterprise collaboration and interoperability background, automatic collaborative business process deduction is a crucial researching subject. We have designed a methodology of deducing collaborative process by only collecting collaborative objectives and partners’ business services. The two key problems are (i) selecting corresponding business services for a set of collaborative objectives and (ii) ordering business services with serializations and parallelization. This paper aims to present a solution of business service selection and the following business process extraction. In order to solve the problem, we have defined a collaborative ontology, which contains numerous instances of business services and processes from the MIT process handbook. The collaborative ontology contains essential concepts in collaborative situations and process-deducing rules and algorithms. We provide a brief illustration of implementation within a SaaS toolkit called Mediator Modeling 2ool.


Business process management Model-driven engineering Inter-enterprise collaboration Ontology 



Acteur de l’innovation par la recherche partenariale (ARMINES). National Natural Science Foundation of China (No:61703032). Supported by the Fundamental Funds for Humanities and Social Sciences of Beijing Jiaotong University (No: 2015jbwy013).


  1. 1.
    Rajsiri V, Lorr J-P, Bnaben F, Pingaud H (2010) Knowledge-based system for collaborative process specification. Comput Ind 61:161–175CrossRefGoogle Scholar
  2. 2.
    Malone TW, Crowston K, Herman GA (2003) Organizing business knowledge: the MIT process handbook. The MIT Press, CambridgeGoogle Scholar
  3. 3.
    ISO 9000 (2005) “ISO 9000 Quality management"Google Scholar
  4. 4.
    ISO 9000 X50-130 (2005) “NF EN ISO 9000 X50-130 Systmes de management de la qualit—Principes essentiels et vocabulaire”Google Scholar
  5. 5.
    Jong J, Dietz JLG (2010) Understanding the realization of organizations. Adv Enterp Eng IV 49:31–49Google Scholar
  6. 6.
    Rupietta W (1994) Organization models for cooperative office applications. In: Karagiannis D (ed) Database and Expert Systems Applications. DEXA 1994. Lecture Notes in Computer Science, vol 856. Springer, Berlin, Heidelberg, pp 114–124Google Scholar
  7. 7.
    Jiang J, Dignum V, Tan YH, Overbeek S (2011) A context-aware inter-organizational collaboration model applied to international trade. In: Electronic Government, pp 308–319Google Scholar
  8. 8.
    Alam KA, Ahmad R, Akhunzada A, Nasir MHNM, Khan SU (2015) Impact analysis and change propagation in service-oriented enterprises: a systematic review. Inf Syst 54:43–73 WOS:000362046700004CrossRefGoogle Scholar
  9. 9.
    Han SN, Lee GM, Crespi N (2014) Semantic context-aware service composition for building automation system. IEEE Trans Ind Inf 10:752–761 WOS:000336668600074CrossRefGoogle Scholar
  10. 10.
    Bianchini D, Cappiello C, De Antonellis V, Pernici B (2014) Service identification in interorganizational process design. IEEE Trans Serv Comput 7:265–278CrossRefGoogle Scholar
  11. 11.
    Nisa R, Qamar U (2015) A text mining based approach for web service classification. Inf Syst e Bus Manag 13:751–768CrossRefGoogle Scholar
  12. 12.
    Tan X, Di L, Deng M, Chen A, Huang F, Peng C, Gao M, Yao Y, Sha Z (2015) Cloud- and agent-based geospatial service chain: a case study of submerged crops analysis during flooding of the Yangtze River Basin. IEEE J Sel Top Appl Earth Obs Remote Sens 8:1359–1370 WOS:000352279200038Google Scholar
  13. 13.
    Cancian MH, Rabelo R, von Wangenheim CG (2015) Collaborative business processes for enhancing partnerships among software services providers. Enterp Inf Syst 9:634–659Google Scholar
  14. 14.
    Qamar U, Niza R, Bashir S, Khan FH (2016) A majority vote based classifier ensemble for web service classification. Bus Inf Syst Eng 58:249–259 WOS:000379867800003CrossRefGoogle Scholar
  15. 15.
    Song C, Cho E (2016) An integrated design method for SOA-based business modeling and software modeling. Int J Softw Eng Knowl Eng 26:347–377 WOS:000375089200008CrossRefGoogle Scholar
  16. 16.
    Gromoff A, Kazantsev N, Bilinkis (2016) An approach to knowledge management in construction service—oriented architecture. In: Howlett RJ, Jain LC, Gabrys B, Toro C, Lim CP (eds) Knowledge-based and intelligent information and engineering systems: Proceedings of the 20th international conference Kes-2016, vol 96. Elsevier Science, Amsterdam, pp 1179–1185 WOS:000383252400127Google Scholar
  17. 17.
    Yang X, Yu T, Xu H (2016) A novel framework of using petri net to timed service business process modeling. Int J Softw Eng Knowl Eng 26:633–652 WOS:000381113500006CrossRefGoogle Scholar
  18. 18.
    Rong W, Peng B, Ouyang Y, Liu K, Xiong Z (2015) Collaborative personal profiling for web service ranking and recommendation. Inf Syst Front 17:1265–1282 WOS:000365415000007CrossRefGoogle Scholar
  19. 19.
    Mishra S, Kumar C (2016) A novel adaptive structure for SOA system effort estimation. Trans Emerg Telecommun Technol 27:1115–1127 WOS:000380961100008CrossRefGoogle Scholar
  20. 20.
    Hachicha M, Fahad M, Moalla N, Ouzrout Y (2016) Performance assessment architecture for collaborative business processes in BPM-SOA-based environment. Data Knowl Eng 105:73–89 WOS:000385604600006CrossRefGoogle Scholar
  21. 21.
    Navarro A, da Silva A (2016) A metamodel-based definition of a conversion mechanism between SOAP and RESTful web services. Comput Stand Interfaces 48:49–70 WOS:000382599300005CrossRefGoogle Scholar
  22. 22.
    Mustacoglu AF, Fox GC (2016) A novel digital information service for federating distributed digital entities. Inf Syst 55:20–36 WOS:000363354100002CrossRefGoogle Scholar
  23. 23.
    MacLennan E, Van Belle J-P (2014) Factors affecting the organizational adoption of service-oriented architecture (SOA). Inf Syst e Bus Manag 12:71–100 WOS:000330773900004CrossRefGoogle Scholar
  24. 24.
    Zernadji T, Tibermacine C, Cherif F, Zouioueche A (2016) Integrating quality requirements in engineering web service orchestrations. J Syst Softw 122:463–483 WOS:000387627200029CrossRefGoogle Scholar
  25. 25.
    Ramacher R, Moench L (2015) Service selection with runtime aspects: a hierarchical approach. IEEE Trans Serv Comput 8:481–493 WOS:000356267200013CrossRefGoogle Scholar
  26. 26.
    Neiger D, Churilov L, Flitman A (2009) Business objectives modelling. In: Value-focused business process engineering: a systems approach, vol 19. Springer, Boston, pp 1–26CrossRefGoogle Scholar
  27. 27.
    Menzel C, Mayer RJ (2006) The IDEF Family of Languages. In: Handbook on architectures of information systems, pp 215–249Google Scholar
  28. 28.
    IDEF0 (1993) “Announcing the standard for integration definition for function modeling (IDEF0)"Google Scholar
  29. 29.
    Smullyan RM (1995) First-order logic. Dover Publications, New YorkzbMATHGoogle Scholar
  30. 30.
    Mu W, Bnaben F, Pingaud H (2016) Collaborative process cartography deduction based on collaborative ontology and model transformation. Inf Sci 334335:83–102CrossRefGoogle Scholar
  31. 31.
    Benaben, F, Touzi J, Rajsiri V, Lorr JP (2008) Mediation information system design in a collaborative SOA context through a MDD approach. In: Proceedings of MDISIS’08, pp 1–17Google Scholar
  32. 32.
    Sun W, Zhang K, Chen SK, Zhang X, Liang H (2010) Software as a service: an integration perspective. In: Service-Oriented Computing ICSOC 2007, pp 558–569Google Scholar
  33. 33.
    Wu B, Deng S, Li Y, Wu J, Yin J (2011) Reference models for Saas oriented business workflow management systems, pp 242–249, IEEEGoogle Scholar
  34. 34.
    Endo AT, Simao A (2011) Model-based testing of service-oriented applications via state models, pp 432–439, IEEEGoogle Scholar
  35. 35.
    Gupta V (2008) GWT basics and a first application. In: Accelerated GWT, Apress, pp 3–25Google Scholar
  36. 36.
    Benaben F, Boissel-Dallier N, Lorre J-P, Pingaud H (2010) Semantic reconciliation in interoperability management through model-driven approach. In: CamarinhaMatos L, Boucher X, Afsarmanesh H (eds) Collaborative networks for a sustainable world, vol 336. Springer, Berlin, pp 705–712CrossRefGoogle Scholar
  37. 37.
    Zribi S, Bnaben F, Hamida AB, Lorr JP (2012) Towards a service and choreography governance framework for future internet. In: Enterprise interoperability V, pp 281–291Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Economics and ManagementBeijing Jiaotong UniversityBeijingChina
  2. 2.Industry Engineering CenterToulouse Universities, Ecoles des Mines d’Albi-CarmauxAlbiFrance
  3. 3.Champollion UniversityAlbiFrance

Personalised recommendations