Service Oriented Computing and Applications

, Volume 11, Issue 2, pp 183–201 | Cite as

QoS-aware optimal and automated semantic web service composition with user’s constraints

  • Amina BekkoucheEmail author
  • Sidi Mohammed Benslimane
  • Marianne Huchard
  • Chouki Tibermacine
  • Fethallah Hadjila
  • Mohammed Merzoug
Original Research Paper


Automated semantic web service composition is one of the critical research challenges of service-oriented computing, since it allows users to create an application simply by specifying the inputs that the application requires, the outputs it should produce, and any constraints it should respect. The composition problem has been handled using a variety of techniques, from artificial intelligence planning to optimization algorithms. However no approach so far has focused on handling three composition dimensions simultaneously, producing solutions that are: (1) fully functional (i.e., fully executable) by using a mechanism of semantic matching between the services involved in the solutions, (2) are optimized according to non-functional quality-of-service (QoS) measurements, and (3) respect global QoS constraints. This paper presents a novel approach based on a Harmony Search algorithm that addresses these three dimensions simultaneously through a fitness function, to select the optimal or near-optimal solution in semantic web service composition. In our approach, the search space is modeled as a planning-graph structure which encodes all the possible composition solutions for a given user request. To improve the selection process we have compared the original Harmony Search algorithm with its recently developed variants Improved Harmony Search (IHS) algorithm and Global Best Harmony Search (GHS) algorithm. An experimentation of the approach conducted with an extended version of the Web Service Challenge 2009 dataset showed that: (1) our approach is efficient and effective to extract the optimal or near-optimal composition in diverse scenarios; and (2) both variants IHS and GHS algorithms have brought improvements in terms of fitness and execution time.


Semantic web service composition Semantic matching Planning graph Harmony Search algorithm Quality of service (QoS) 


  1. 1.
    Akkiraju R, Srivastava B, Ivan A, Goodwin R, Syeda-Mahmood TF (2006) SEMAPLAN: combining planning with semantic matching to achieve web service composition. In: IEEE international conference on web services (ICWS), IEEE, pp 37–44Google Scholar
  2. 2.
    Alonso G, Casati F, Kuno HA, Machiraju V (2004) Web services—concepts, architectures and applications., Data-centric systems and applicationsSpringer, BerlinzbMATHGoogle Scholar
  3. 3.
    Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware service composition. In: International conference on world wide web (WWW), ACM, pp 881–890Google Scholar
  4. 4.
    Azmeh Z, Driss M, Hamoui F, Huchard M, Moha N, Tibermacine C (2011) Selection of composable web services driven by user requirements. In: IEEE international conference on web services (ICWS), IEEE, pp 395–402Google Scholar
  5. 5.
    Baccar S, Rouached M, Abid M (2013) A user requirements oriented semantic web services composition framework. In: IEEE ninth world congress on services (SERVICES), IEEE, pp 333–340Google Scholar
  6. 6.
    Boukadi K, Grati R, Ben-Abdallah H (2016) Toward the automation of a QoS-driven sla establishment in the cloud. Serv Oriented Comput Appl 10(3):279–302CrossRefGoogle Scholar
  7. 7.
    Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for QoS-aware service composition based on genetic algorithms. In: 7th annual genetic and evolutionary computation conference (GECCO), ACM, pp 1069–1075Google Scholar
  8. 8.
    Carman M, Serafini L, Traverso P (2003) Web service composition as planning. In: ICAPS 2003 workshop on planning for web servicesGoogle Scholar
  9. 9.
    Deng S, Wu B, Yin J, Wu Z (2013) Efficient planning for top-k web service composition. Knowl Inf Syst 36(3):579–605CrossRefGoogle Scholar
  10. 10.
    Esfahani PM, Habibi J, Varaee T (2012) Application of social harmony search algorithm on composite web service selection based on quality attributes. In: Sixth international conference on genetic and evolutionary computing (ICGEC), IEEE, pp 526–529Google Scholar
  11. 11.
    Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories, methods, and technologies. MIT press, CambridgeGoogle Scholar
  12. 12.
    Geem ZW (2000) Optimal design of water distribution networks using harmony search. PhD thesis, Korea University, USAGoogle Scholar
  13. 13.
    Geem ZW (2007) Harmony search algorithm for solving sudoku. In: Knowledge-based intelligent information and engineering systems, Springer, pp 371–378Google Scholar
  14. 14.
    Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRefGoogle Scholar
  15. 15.
    Ghallab M, Nau D, Traverso P (2004) Automated planning: theory and practice. Elsevier, AmsterdamzbMATHGoogle Scholar
  16. 16.
    Gu Z, Li J, Xu B (2008) Automatic service composition based on enhanced service dependency graph. In: IEEE international conference on web services (ICWS), IEEE, pp 246–253Google Scholar
  17. 17.
    Hatzi O, Vrakas D, Nikolaidou M, Bassiliades N, Anagnostopoulos D, Vlahavas I (2012) An integrated approach to automated semantic web service composition through planning. IEEE Trans Serv Comput 5(3):319–332CrossRefGoogle Scholar
  18. 18.
    Hwang SY, Lim EP, Lee CH, Chen CH (2008) Dynamic web service selection for reliable web service composition. IEEE Trans Serv Comput 1(2):104–116CrossRefGoogle Scholar
  19. 19.
    Jaeger MC, Rojec-Goldmann G, Muhl G (2004) QoS aggregation for web service composition using workflow patterns. In: 17th IEEE international enterprise distributed object computing conference (EDOC), IEEE, pp 149–159Google Scholar
  20. 20.
    Jafarpour N, Khayyambashi MR (2010) QoS-aware selection of web service compositions using harmony search algorithm. J Digit Inf Manag 8(3):160–166Google Scholar
  21. 21.
    Jiang W, Zhang C, Huang Z, Chen M, Hu S, Liu Z (2010) Qsynth: a tool for QoS-aware automatic service composition. In: IEEE international conference on web services (ICWS), IEEE, pp 42–49Google Scholar
  22. 22.
    Kaveh A, Ahangaran” M (2012) Discrete cost optimization of composite floor system using social harmony search model. Appl Soft Comput 12(1):372–381CrossRefGoogle Scholar
  23. 23.
    Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning, Springer, pp 760–766Google Scholar
  24. 24.
    Kim JH, Geem ZW (2015) Harmony search algorithm. In: Proceedings of the 2nd international conference on harmony search algorithm (ICHSA2015), vol 382, SpringerGoogle Scholar
  25. 25.
    Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear muskingum model using harmony search1. JAWRA J Am Water Resour Assoc 37(5):1131–1138CrossRefGoogle Scholar
  26. 26.
    Klusch M, Kapahnke P (2008) Semantic web service selection with sawsdl-mx. In: 7th International semantic web conference, Citeseer, p 3Google Scholar
  27. 27.
    Klusch M, Gerber A, Schmidt M (2005) Semantic web service composition planning with owls-xplan. In: AAAI fall symposium on semantic web and agents, AAAI PressGoogle Scholar
  28. 28.
    Ko JM, Kim CO, Kwon IH (2008) Quality-of-service oriented web service composition algorithm and planning architecture. J Syst Softw 81(11):2079–2090CrossRefGoogle Scholar
  29. 29.
    Kona S, Bansal A, Blake MB, Gupta G (2008) Generalized semantics-based service composition. In: IEEE International conference on web services (ICWS), IEEE, pp 219–227Google Scholar
  30. 30.
    Lécué F (2009) Optimizing QoS-aware semantic web service composition. Springer, BerlinCrossRefGoogle Scholar
  31. 31.
    Lécué F, Léger A (2006) A formal model for semantic web service composition. In: The semantic web—ISWC 2006, Springer, pp 385–398Google Scholar
  32. 32.
    Lécué F, Salibi S, Bron P, Moreau A (2008) Semantic and syntactic data flow in web service composition. In: IEEE international conference on web services (ICWS), IEEE, pp 211–218Google Scholar
  33. 33.
    Lécué F, Silva E, Pires LF (2008) A framework for dynamic web services composition. In: Emerging web services technology, vol II, Springer, pp 59–75Google Scholar
  34. 34.
    Levesque HJ, Reiter R, Lesperance Y, Lin F, Scherl RB (1997) Golog: a logic programming language for dynamic domains. J Logic Programm 31(1):59–83MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li W, Dai X, Jiang H (2010) web services composition based on weighted planning graph. In: First international conference on networking and distributed computing (ICNDC), IEEE, pp 89–93Google Scholar
  36. 36.
    Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetzbMATHGoogle Scholar
  37. 37.
    McDermott DV (2002) Estimated-regression planning for interactions with web services. AIPS 2:204–211Google Scholar
  38. 38.
    McIlraith S, Son TC (2002) Adapting golog for composition of semantic web services. KR 2:482–493Google Scholar
  39. 39.
    Menascé DA (2004) Composing web services: a QoS view. IEEE Internet Comput 8(6):88–90CrossRefGoogle Scholar
  40. 40.
    Omran MG, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656MathSciNetzbMATHGoogle Scholar
  41. 41.
    Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall Inc, Upper Saddle RiverzbMATHGoogle Scholar
  42. 42.
    Peer J (2005) Web service composition as AI planning—a survey, University of St. Gallen, SwitzerlandGoogle Scholar
  43. 43.
    Ponnekanti SR, Fox A (2002) Sword: a developer toolkit for web service composition. In: Eleventh international world wide web conference (WWW), vol 45Google Scholar
  44. 44.
    Pop CB, Chifu VR, Salomie I, Dinsoreanu M (2009) Immune-inspired method for selecting the optimal solution in web service composition. In: Resource discovery, Springer, pp 1–17Google Scholar
  45. 45.
    Ran S (2003) A model for web services discovery with QoS. ACM Sigecom Exch 4(1):1–10CrossRefGoogle Scholar
  46. 46.
    Rodriguez-Mier P, Mucientes M, Lama M (2015) Hybrid optimization algorithm for large-scale QoS-aware service composition. In: IEEE transactions on services computingGoogle Scholar
  47. 47.
    Rodriguez Mier P, Pedrinaci C, Lama M, Mucientes M (2016) An integrated semantic web service discovery and composition framework. In: IEEE transactions on services computing, vol 9Google Scholar
  48. 48.
    Russell S, Norvig P, Intelligence A (1995) A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25:27Google Scholar
  49. 49.
    Salomie I, Chifu VR, Pop CB (2014) Hybridization of cuckoo search and firefly algorithms for selecting the optimal solution in semantic web service composition. In: Cuckoo search and firefly algorithm, Springer, pp 217–243Google Scholar
  50. 50.
    Shiaa MM, Fladmark JO, Thiell B (2008) An incremental graph-based approach to automatic service composition. In: IEEE international conference on services computing (SCC), IEEE, vol 1, pp 397–404Google Scholar
  51. 51.
    Sirin E, Parsia B (2004) Planning for semantic web services. In: Semantic web services workshop at 3rd international semantic web conference, pp 33–40Google Scholar
  52. 52.
    Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) HTN planning for web service composition using SHOP2. Web Semant 1(4):377–396CrossRefGoogle Scholar
  53. 53.
    Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) HTN planning for web service composition using SHOP2. Web Semant 1(4):377–396CrossRefGoogle Scholar
  54. 54.
    Tangpattanakul P, Meesomboon A, Artrit P (2010) Optimal trajectory of robot manipulator using harmony search algorithms. In: Recent advances in harmony search algorithm, Springer, pp 23–36Google Scholar
  55. 55.
    Wang J, Hou Y (2008) Optimal web service selection based on multi-objective genetic algorithm. In: International symposium on computational intelligence and design (ISCID), IEEE, vol 1, pp 553–556Google Scholar
  56. 56.
    Wang P, Chao KM, Lo CC (2010) On optimal decision for QoS-aware composite service selection. Expert Syst Appl 37(1):440–449CrossRefGoogle Scholar
  57. 57.
    Weise T, Bleul S, Comes D, Geihs K (2008) Different approaches to semantic web service composition. In: Third international conference on internet and web applications and services (ICIW), IEEE, pp 90–96Google Scholar
  58. 58.
    Wu B, Chi C, Xu S (2007) Service selection model based on QoS reference vector. In: IEEE international conference on services computing-workshops (SCW 2007), IEEE, pp 270–277Google Scholar
  59. 59.
    Xu J, Reiff-Marganiec S (2008) Towards heuristic web services composition using immune algorithm. In: IEEE international conference on web services (ICWS), IEEE, pp 238–245Google Scholar
  60. 60.
    Yan Y, Xu B, Gu Z (2008) Automatic service composition using and/or graph. In: 10th IEEE conference on e-commerce technology and the fifth IEEE conference on enterprise computing. E-Commerce and E-Services, IEEE, pp 335–338Google Scholar
  61. 61.
    Yu C, Huang L (2016) A web service QoS prediction approach based on time-and location-aware collaborative filtering. Serv Oriented Comput Appl 10(2):135–149MathSciNetCrossRefGoogle Scholar
  62. 62.
    Yu Q, Bouguettaya A (2009) Foundations for efficient web service selection. Springer, BerlinGoogle Scholar
  63. 63.
    Yu T, Zhang Y, Lin KJ (2007) Efficient algorithms for web services selection with end-to-end QoS constraints. ACM Trans Web (TWEB) 1(1):6CrossRefGoogle Scholar
  64. 64.
    Zeng L, Benatallah B, Ngu AH, Dumas M, Kalagnanam J, Chang H (2004a) QoS-aware middleware for web services composition. IEEE Trans Softw Eng 30(5):311–327CrossRefGoogle Scholar
  65. 65.
    Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004b) QoS-aware middleware for web services composition. IEEE Trans Softw Eng 30(5):311–327CrossRefGoogle Scholar
  66. 66.
    Zhang W, Yang Y, Tang S, Fang L (2007) QoS-driven service selection optimization model and algorithms for composite web services. In: 31st annual international computer software and applications conference (COMPSAC), vol 2, pp 425–431Google Scholar
  67. 67.
    Zheng X, Yan Y (2008) An efficient syntactic web service composition algorithm based on the planning graph model. In: IEEE International conference on web services (ICWS), IEEE, pp 691–699Google Scholar
  68. 68.
    Zhou A, Huang S, Wang X (2007) BITS: a binary tree based web service composition system. Int J Web Serv Res 4(1):40–58CrossRefGoogle Scholar
  69. 69.
    Zou D, Gao L, Li S, Wu J (2011) Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput 11(2):1556–1564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Amina Bekkouche
    • 1
    Email author
  • Sidi Mohammed Benslimane
    • 2
  • Marianne Huchard
    • 3
  • Chouki Tibermacine
    • 3
  • Fethallah Hadjila
    • 4
  • Mohammed Merzoug
    • 4
  1. 1.Computer Science Department, Faculty of SciencesAbou Bekr Belkaid University of TlemcenTlemcenAlgeria
  2. 2.LabRi LaboratoryÉcole Supérieure en InformatiqueEl Wiam P.O., Sidi Bel AbbesAlgeria
  3. 3.LIRMM, CNRSMontpellier UniversityMontpellierFrance
  4. 4.Computer Research Laboratory, Faculty of SciencesAbou Bekr Belkaid University of TlemcenTlemcenAlgeria

Personalised recommendations