Skip to main content
Log in

Using OMP and SD algorithms together in mm-Wave mMIMO channel estimation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Lens antenna array is considered as an effective beam selection mechanism in millimeter wave massive multiple input multiple output systems. Efficient channel estimation (CE) algorithms are required to use the advantage of the beam selection paradigm. Recently, compressive sensing-based algorithms are used to utilize existing sparsity for CE in these systems. Among them, orthogonal matching pursuit (OMP) and support detection (SD) are the most popular ones. These two popular algorithms have their own advantages and disadvantages. In this paper, we propose to use OMP and SD together for better CE. Simulations validate that the proposed algorithm enhances the CE quality over the conventional algorithms. These simulations are tested over two popularly used channel models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. p is founded experimentally in the next section by considering the generalizability and performance of the proposed algorithm.

References

  1. 3rd Generation Partnership Project (3GPP): Spatial channel model for multiple input multiple output (MIMO) simulations (2014). Document 25.996 Version 12.0.0 Release 12

  2. Alkhateeb, A., Ayach, O.E., Leus, G., Heath, R.W.: Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Topics Signal Process. 8(5), 831–846 (2014). https://doi.org/10.1109/JSTSP.2014.2334278

    Article  Google Scholar 

  3. Alkhateeb, A., Leus, G., Heath, R.W.: Compressed sensing based multi-user millimeter wave systems: How many measurements are needed? In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 2909–2913 (2015). https://doi.org/10.1109/ICASSP.2015.7178503

  4. Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., Heath, R.W.: MIMO precoding and combining solutions for millimeter-wave systems. IEEE Commun. Mag. 52(12), 122–131 (2014). https://doi.org/10.1109/MCOM.2014.6979963

    Article  Google Scholar 

  5. Ayach, O.E., Rajagopal, S., Abu-Surra, S., Pi, Z., Heath, R.W.: Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wireless Commun. 13(3), 1499–1513 (2014). https://doi.org/10.1109/TWC.2014.011714.130846

    Article  Google Scholar 

  6. Björnson, E., Hoydis, J., Sanguinetti, L.: Massive MIMO networks: Spectral, energy, and hardware efficiency. Found. Trends Signal Process. 11(3–4), 154–655 (2017). https://doi.org/10.1561/2000000093

    Article  Google Scholar 

  7. Brady, J., Behdad, N., Sayeed, A.M.: Beamspace MIMO for millimeter-wave communications: system architecture, modeling, analysis, and measurements. IEEE Trans. Antennas Propag. 61(7), 3814–3827 (2013). https://doi.org/10.1109/TAP.2013.2254442

    Article  Google Scholar 

  8. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001). https://doi.org/10.1137/S003614450037906X

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, L., Gao, X., Han, S., Chih-Lin, I., Wang, X.: Beamspace channel estimation for millimeter-wave massive mimo systems with lens antenna array. In: Proc. IEEE/CIC ICCC, pp. 1–6 (2016). https://doi.org/10.1109/ICCChina.2016.7636854

  10. Ding, Y., Rao, B.D.: Dictionary learning-based sparse channel representation and estimation for FDD massive MIMO systems. IEEE Trans. Wireless Commun. 17(8), 5437–5451 (2018). https://doi.org/10.1109/TWC.2018.2843786

    Article  Google Scholar 

  11. Ertel, R.B., Cardieri, P., Sowerby, K.W., Rappaport, T.S., Reed, J.H.: Overview of spatial channel models for antenna array communication systems. IEEE Pers. Commun. 5(1), 10–22 (1998). https://doi.org/10.1109/98.656151

    Article  Google Scholar 

  12. Gao, X., Dai, L., Han, S., I, C.L., Wang,: X.: Reliable beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array. IEEE Trans. Wireless Commun 16(9), 6010–6021 (2017). https://doi.org/10.1109/TWC.2017.2718502

  13. Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M.A., Shakir, M.Z.: Mmwave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Commun. 22(5), 13–21 (2015). https://doi.org/10.1109/MWC.2015.7306533

    Article  Google Scholar 

  14. Han, S., Chih-Lin, I., Xu, Z., Rowell, C.: Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53(1), 186–194 (2015). https://doi.org/10.1109/MCOM.2015.7010533

    Article  Google Scholar 

  15. Heath, R.W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process. 10(3), 436–453 (2016). https://doi.org/10.1109/JSTSP.2016.2523924

    Article  Google Scholar 

  16. Kim, T., Love, D.J.: Virtual AoA and AoD estimation for sparse millimeter wave MIMO channels. In: Proc. Int. Wksh. Signal Process. Adv. Wireless Commun. (SPAWC), pp. 146–150 (2015). https://doi.org/10.1109/SPAWC.2015.7227017

  17. Kim, T., Love, D.J.: Virtual AoA and AoD estimation for sparse millimeter wave MIMO channels. In: Proc. SPAWC Workshops, pp. 146–150 (2015). https://doi.org/10.1109/SPAWC.2015.7227017

  18. Kotecha, J.H., Sayeed, A.M.: Transmit signal design for optimal estimation of correlated MIMO channels. IEEE Trans. Signal Process. 52(2), 546–557 (2004). https://doi.org/10.1109/TSP.2003.821104

    Article  MathSciNet  MATH  Google Scholar 

  19. Kutty, S., Sen, D.: Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tuts. 18(2), 949–973 (2015). https://doi.org/10.1109/COMST.2015.2504600

    Article  Google Scholar 

  20. Molisch, A.F., Kuchar, A., Laurila, J., Hugl, K., Schmalenberger, R.: Geometry-based directional model for mobile radio channels-principles and implementation. Eur. Trans. Telecommun. 14(4), 351–359 (2003). https://doi.org/10.1002/ett.928

    Article  Google Scholar 

  21. Nazzal, M., Aygül, M.A., Arslan, H.: Channel modeling for 5G and beyond. Flexible cognitive radio access technologies 5G beyond, p. 341 (2020). https://doi.org/10.1049/pbte092e_ch11

  22. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proc. 27th Ann. Asilomar Conf. Signals Syst. Comput., pp. 40–44. Pacific Grove, CA, Nov (1993). https://doi.org/10.1109/ACSSC.1993.342465

  23. Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011). https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  24. Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011). https://doi.org/10.1109/JPROC.2011.2143650

    Article  Google Scholar 

  25. Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F.: Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013). https://doi.org/10.1109/MSP.2011.2178495

    Article  Google Scholar 

  26. Sayeed, A., Behdad, N.: Continuous aperture phased mimo: basic theory and applications. In: Proceedings of the 48th Annual Allerton Conference Communications Control, Computing (Allerton), pp. 1196–1203. IEEE (2010). https://doi.org/10.1109/ALLERTON.2010.5707050

  27. Sayeed, A., Brady, J.: Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies. Proc. IEEE Global Commun. Conf. GLOBECOM, 3679–3684 (2013). https://doi.org/10.1109/GLOCOM.2013.6831645

    Article  Google Scholar 

  28. Sayeed, A.M.: Deconstructing multiantenna fading channels. IEEE Trans. Signal Process. 50(10), 2563–2579 (2002). https://doi.org/10.1109/TSP.2002.803324

    Article  Google Scholar 

  29. Sturm, B.L., Christensen, M.G.: Comparison of orthogonal matching pursuit implementations. In: Proc. 20th Eur. Signal Process. Conf. (EUSIPCO), pp. 220–224. IEEE (2012). https://doi.org/10.5281/zenodo.52420

  30. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007). https://doi.org/10.1109/TIT.2007.909108

    Article  MathSciNet  MATH  Google Scholar 

  31. Xiao, M., Mumtaz, S., Huang, Y., et al.: Millimeter wave communications for future mobile networks. IEEE J. Sel. Areas Commun. 35(9), 1909–1935 (2017). https://doi.org/10.1109/JSAC.2017.2719924

    Article  Google Scholar 

  32. Xie, T., Dai, L., Ng, D.W.K., Chae, C.B.: On the power leakage problem in millimeter-wave massive MIMO with lens antenna arrays. IEEE Trans. Signal Process. 67(18), 4730–4744 (2019). https://doi.org/10.1109/TSP.2019.2926019

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, L., Zeng, Y., Zhang, R.: Efficient channel estimation for millimeter wave MIMO with limited RF chains. Proc. IEEE Int. Conf. Commun. ICC, 1–6 (2016). https://doi.org/10.1109/ICC.2016.7510952

    Article  Google Scholar 

  34. Zeng, Y., Zhang, R.: Millimeter wave MIMO with lens antenna array: a new path division multiplexing paradigm. IEEE Trans. Commun. 64(4), 1557–1571 (2016). https://doi.org/10.1109/TCOMM.2016.2533490

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mehmet Ali Aygül and Mahmoud Nazzal performed computer-based simulations, wrote the paper, and developed the system model. The development of the manuscript was supervised by Hüseyin Arslan. All of the authors have read and approved the contents of this manuscript.

Corresponding author

Correspondence to Mehmet Ali Aygül.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Not applicable.

Code availability

The codes in this study are available on request from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of H. Arslan was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 5200030 with the cooperation of VESTEL and Istanbul Medipol University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aygül, M.A., Nazzal, M. & Arslan, H. Using OMP and SD algorithms together in mm-Wave mMIMO channel estimation. SIViP 16, 1205–1213 (2022). https://doi.org/10.1007/s11760-021-02071-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02071-5

Keywords

Navigation