Skip to main content
Log in

A dual-residual network for JPEG compression artifacts reduction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Current image compression techniques such as JPEG and WebP are widely applied in the age of information. However, lossy compression like JPEG in its nature will introduce visually annoying artifacts while saving Internet bandwidth and storage space. The artifacts such as blocking and ringing are especially sharp at low bitrates. In this paper, we propose a novel dual-residual network to reduce compression artifacts caused by lossy compression codecs. This network directly learns an end-to-end mapping between the distorted image processed by JPEG or other compression methods and the original image, which takes decompressed images with blocking artifacts as input and produces clearer images with less artifacts. Experiments results on the test dataset demonstrate the efficiency of the proposed model, especially at very low bitrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taubman, D., Marcellin, M.: JPEG2000: Image Compression Fundamentals, Standards and Practice, vol. 11, p. 286. Springer, Berlin (2002)

    Google Scholar 

  2. Acharya, T., Tsai, P.S.: JPEG Still Image Compression Standard. Wiley, Hoboken (2005)

    Book  Google Scholar 

  3. Bender, J., Samanta, R.: Quality Assurance: De-mystifying the Quality Factor in Equities and Bonds, vol. 43, pp. 88–98. Social Science Electronic Publishing, New York (2017)

    Google Scholar 

  4. Kwan, C., Larkin, J.: Perceptually Lossless Compression for Mastcam Images. In: IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference. (2018). https://doi.org/10.1109/uemcon.2018.8796824

  5. Grm, K., Štruc, V., Artiges, A., et al.: Strengths and weaknesses of deep learning models for face recognition against image degradations. IET Biom. 7, 81–89 (2018)

    Article  Google Scholar 

  6. Wang, Y., Wei, K., Wan, P.: A method of ultrasonic image recognition for thyroid papillary carcinoma based on deep convolution neural network. NeuroQuantology 16, 757–768 (2018)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. Med. Image Comput. Comput. Assist. Interv. 9351, 234–241 (2015)

    Google Scholar 

  8. Oktay, O., Ferrante, E., Kamnitsas, K., et al.: Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37, 384 (2018)

    Article  Google Scholar 

  9. Guo, Z., Li, X., Huang, H., et al.: Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans. Radiat Plasma Med Sci 3, 162–169 (2019)

    Article  Google Scholar 

  10. Lu, Q., Liu, C., Jiang, Z., et al.: G-CNN: object detection via grid convolutional neural network. IEEE Access 5, 24023–24031 (2017)

    Article  Google Scholar 

  11. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017)

    Article  Google Scholar 

  12. Chiou, Y.W., Yeh, C.H., Kang, L.W., et al.: Efficient image/video deblocking via sparse representation. In: 2012 Visual Communications and Image Processing (VCIP), pp. 1–6 (2012)

  13. Yoo, S.B., Choi, K., Ra, J.B.: Post-processing for blocking artifact reduction based on inter-block correlation. IEEE Trans. Multimed. 16, 1536–1548 (2014)

    Article  Google Scholar 

  14. Francisco, N.C., Rodrigues, N.M., Silva, E.A.D., et al.: A generic post deblocking filter for block based image compression algorithms. Signal Process. Image Commun. 27, 9 (2012)

    Article  Google Scholar 

  15. Liew, W.C., Yan, H.: Blocking artifacts suppression in block-coded images using overcomplete wavelet representation. IEEE Trans. Circuits Syst. Video Technol. 14, 450–461 (2004)

    Article  Google Scholar 

  16. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16, 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  17. Zhang, X., Xiong, R., Ma, S., et al.: Reducing Blocking Artifacts in Compressed Images via Transform-Domain Non-local Coefficients Estimation. In: IEEE International Conference on Multimedia & Expo., pp. 836–841. (2012)

  18. Wang, Z., Liu, D., Chang, S., et al.: D3: Deep Dual-Domain Based Fast Restoration of JPEG-Compressed Images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2764–2772. (2016)

  19. Dong, C., Loy, C.C., He, K., et al.: Learning a Deep Convolutional Network for Image Super-Resolution. In: European Conference on Computer Vision, pp. 184–199. (2014)

  20. Chao, D., Deng, Y., Chen, C.L., et al.: Compression Artifacts Reduction by a Deep Convolutional Network. In: Computer Vision and Pattern Recognition, pp. 576–584. (2015)

  21. Liu, J., Liu, D., Yang, W., et al.: A comprehensive benchmark for single image compression artifacts reduction. IEEE Trans. Image Process. 29, 7845–7860 (2019)

    Article  Google Scholar 

  22. Dai, Y., Liu, D., Wu, F.: A Convolutional Neural Network Approach for Post-processing in HEVC Intra Coding. In: Proceedings of the 23rd International Conference on Multimedia Modeling, pp. 28–39. (2017)

  23. Zhang, X., Yang, W., Hu, Y., et al.: Dmcnn: Dual-Domain Multi-Scale Convolutional Neural Network for Compression Artifacts Removal. In: IEEE 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 390–394 (2018)

  24. Zhang, B., Gu, J., Chen, C., et al.: One-two-one networks for compression artifacts reduction in remote sensing. ISPRS J. Photogramm. Remote Sens. 145, 184–196 (2018)

    Article  Google Scholar 

  25. Wang, S.H., Phillips, P., Sui, Y., et al.: Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 42, 85 (2018)

    Article  Google Scholar 

  26. Hara, K., Saito, D., Shouno, H.: Analysis of function of rectified linear unit used in deep learning. In: 2015 International Joint Conference on Neural Networks, pp. 1–8 (2015)

  27. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the International Conference on Machine Learning (ICML) (2013)

  28. Maleki, D., Nadalian, S., Derakhshani, M.M., et al.: BlockCNN: A Deep Network for Artifact Removal and Image Compression. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp. 2555–2558. (2018)

  29. Perone, C.S., Calabrese, E., Cohen-Adad, J.: Spinal cord gray matter segmentation using deep dilated convolutions. Sci. Rep. 8, 5966 (2018)

    Article  Google Scholar 

  30. Renton, G., Soullard, Y., Chatelain, C., et al.: Fully convolutional network with dilated convolutions for handwritten text line segmentation. Int. J. Doc. Anal. Recognit. 7553, 1–10 (2018)

    Google Scholar 

  31. Arbelaez, P., Ponttuset, J., Barron, J., et al.: Multiscale Combinatorial Grouping. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 328–335 (2014)

  32. Hui, Z., Wang, X., Gao, X,: Fast and Accurate Single Image Super-Resolution via Information Distillation Network. Computer Vision and Pattern Recognition. arXiv: 1803.09454 (2018)

  33. Abadi, M.: TensorFlow: learning functions at scale. ACM SIGPLAN Not. 51, 1 (2016)

    Article  Google Scholar 

  34. Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007)

    Article  Google Scholar 

  35. Nath, V.K., Hazarika, D., Mahanta, A.: Blocking artifacts reduction using adaptive bilateral filtering. In: International Conference on Signal Processing & Communications. IEEE, pp. 1–5. (2010)

  36. Yim, C., Bovik, A.C.: Quality assessment of deblocked images. IEEE Trans. Image Process. 20, 88–98 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, D., Chen, C. et al. A dual-residual network for JPEG compression artifacts reduction. SIViP 15, 485–491 (2021). https://doi.org/10.1007/s11760-020-01768-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01768-3

Keywords

Navigation