Abstract
Knee issues are very frequent among people of all ages, and osteoarthritis is one of the most common reasons behind them. The primary feature in observing extremity and advancement of osteoarthritis is joint space narrowing (cartilage loss) which is manually computed on knee x-rays by a radiologist. Such manual inspections require an expert radiologist to analyze the x-ray image; moreover, it is a tedious and time-consuming task. In this paper, we present a computer-vision-based system that can assist the radiologists by analyzing the radiological symptoms in knee x-rays for osteoarthritis. Different image processing techniques have been applied on knee radiographs to enhance their quality. The knee region is extracted automatically using template matching. The knee joint space width is calculated, and the radiographs are classified based on the comparison with the standard normal knee joint space width. The experimental evaluation performed on a large knee x-ray dataset shows that our method is able to efficiently detect osteoarthritis, achieving more than 97% detection accuracy.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Altman, R., Gold, G.: Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr. Cartil. 15, A1–A56 (2007)
Altman, R., et al.: Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the osteoarthritis research society: results from a workshop. Osteoarthr. Cartil. 4(4), 217–243 (1996)
Andriacchi, T.P., et al.: Methods for evaluating the progression of osteoarthritis. J. Rehabil. Res. Dev. 37(2), 163–170 (2000)
Anifah, L., et al.: Osteoarthritis classification using self organizing map based on gabor kernel and contrast-limited adaptive histogram equalization. Open Biomed. Eng. J. 7, 18 (2013)
Antony, J., et al.: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: Machine Learning and Data Mining in Pattern Recognition, pp. 376–390 (2017)
Barbour, K.E., Helmick, C.G., Boring, M., Brady, T.J.: Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation-united states, 2013–2015. Morb. Mortal. Wkly. Rep. 66(9), 246–253 (2017)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Cicuttini, F., et al.: Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheumatol. 52(7), 2033–2039 (2005)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)
Dacre, J., Scott, D., Da Silva, J., Welsh, G., Huskisson, E.: Joint space in radiologically normal knees. Rheumatology 30(6), 426–428 (1991)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)
Deng, C.X., Bai, T., Geng, Y.: Image edge detection based on wavelet transform and canny operator. In: International Conference on Wavelet Analysis and Pattern Recognition, pp. 355–359 (2009)
Duan, J., Lu, W., Pan, Z., Bai, L.: New second order mumford-shah model based on \(\gamma \)-convergence approximation for image processing. Infrared Phys. Technol. 76, 641–647 (2016)
Duan, J., Qiu, Z., Lu, W., Wang, G., Pan, Z., Bai, L.: An edge-weighted second order variational model for image decomposition. Digit. Signal Process. 49, 162–181 (2016)
Duncan, S.T., et al.: Sensitivity of standing radiographs to detect knee arthritis: a systematic review of level i studies. Arthroscopy 31(2), 321–328 (2015)
ElTantawy, A., Shehata, M.S.: Local null space pursuit for real-time moving object detection in aerial surveillance. Signal Image Video Process 14(1), 87–95 (2019)
Farid, M.S., Lucenteforte, M., Grangetto, M.: DOST: a distributed object segmentation tool. Multimed. Tools Appl. 77(16), 20839–20862 (2018)
Farid, M.S., Mahmood, A.: Image morphing in frequency domain. J. Math. Imaging Vis. 42(1), 50–63 (2012)
Fatima, T., Farid, M.S.: Automatic detection of plasmodium parasites from microscopic blood images. J. Parasit Dis. (2019). https://doi.org/10.1007/s12639-019-01163-x
Fawcett, T.: An introduction to roc analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)
Galli, M., De Santis, V., Tafuro, L.: Reliability of the ahlbäck classification of knee osteoarthritis. Osteoarthr. Cartil. 11(8), 580–584 (2003)
Glyn-Jones, S., Palmer, A.J.R., Agricola, R., Price, A.J., Vincent, T.L., Weinans, H., Carr, A.J.: Osteoarthritis. Lancet 386(9991), 376–387 (2015)
Gonzalez, R.C., et al.: Digital image processing (2002)
Gornale, S.S., Patravali, P.U., Manza, R.R.: Detection of osteoarthritis using knee x-ray image analyses: a machine vision based approach. Int. J. Comput. Vis. 145(1), 20–26 (2016)
Hassan, G., Hassanien, A.E.: Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. Signal Image Video Process. 12(2), 263–270 (2018)
Kellegren, J.H., Lawrence, J.S.: Radiological assessment of osteoarthritis. Ann. Rheum. Dis. 16(4), 494–501 (1957)
Khan, M.H., Farid, M.S., Grzegorzek, M.: Spatiotemporal features of human motion for gait recognition. Signal Image Video Process. 13(2), 369–377 (2019)
Khan, M.H., Helsper, J., Farid, M.S., Grzegorzek, M.: A computer vision-based system for monitoring vojta therapy. Int. J. Med. Inform. 113, 85–95 (2018)
Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)
Li, S., Wang, S., Zhang, D., Feng, C., Shi, L.: Real-time smoke removal for the surveillance images under fire scenario. Signal Image Video Process. 13(5), 1037–1043 (2019)
Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149, 736–751 (2015)
Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Methods Appl. Sci. 39(14), 4208–4233 (2016)
Matthews, B.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 405(2), 442–451 (1975)
Mengko, T.L., Wachjudi, R., Suksmono, A., Danudirdjo, D.: Automated detection of unimpaired joint space for knee osteoarthritis assessment. In: HEALTHCOM, pp. 400–403 (2015)
Navale, D.I., Hegadi, R.S., Mendgudli, N.: Block based texture analysis approach for knee osteoarthritis identification using svm. In: IEEE WIECON-ECE, pp. 338–341 (2015)
Pandey, M.S., Rajitha, B., Agarwal, S.: Computer assisted automated detection of knee osteoarthritis using x-ray images. Sci. Technol. 1(2), 74–79 (2015)
Peterfy, C., et al.: Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skelet Radiol. 32(3), 128–132 (2003)
Piperno, M., et al.: Quantificative evaluation of joint space width in femorotibal osteoarthritis: comparison of three radiographic views. Osteoarthr. Cartil. 6(4), 252–259 (1998)
Schmidt, J., Amrami, K., Manduca, A., Kaufman, K.: Semi-automated digital image analysis of joint space width in knee radiographs. Skelet Radiol. 34(1), 639–43 (2005)
Segal, N.A., Nevitt, M.C., Lynch, J.A., Niu, J., Torner, J.C., Guermazi, A.: Diagnostic performance of 3d standing ct imaging for detection of knee osteoarthritis features. Physician Sportsmed. 43(3), 213–220 (2015)
Shafizadegan, Z., Karimi, M.T., Shafizadegan, F., Rezaeian, Z.S.: Evaluation of ground reaction forces in patients with various severities of knee osteoarthritis. J. Mech. Med. Biol 16(02), 1650,003 (2016)
Shamir, L., Ling, S., et al.: Knee x-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 56(2), 407–415 (2009)
Shamir, L., et al.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr. Cartil. 17(10), 1307–1312 (2009)
Stachowiak, G.W., Wolski, M., Woloszynski, T., Podsiadlo, P.: Detection and prediction of osteoarthritis in knee and hand joints based on the x-ray image analysis. Biosurf. Biotribol. 2(4), 162–172 (2016)
Subramoniam, M., Rajini, V.: Local binary pattern approach to the classification of osteoarthritis in knee x-ray images. Asian J. Sci. Res. 6(4), 805–811 (2013)
Subramoniam, M., Rajini, V.: Support vector machine approach for the diagnosis of arthritis from digital x-ray images using local ternary pattern. Indian J. Appl. Res. 36(4), 201–203 (2013)
Tazeem, H., Farid, M.S., Mahmood, A.: Improving security surveillance by hidden cameras. Multimed. Tools Appl. 76(2), 2713–2732 (2017)
Thomson, J., O’Neill, T., Felson, D., Cootes, T.: Automated shape and texture analysis for detection of osteoarthritis from radiographs of the knee. MICCAI 2015, 127–134 (2015)
Tiulpin, A., Thevenot, J., et al.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1), 1727 (2018)
Wang, P., Zhu, H., Ling, X.: Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE. Signal Image Video Process. 14(1), 29–37 (2019)
World Health Organization: Global Health Observatory (GHO) data (2019). https://www.who.int/gho/health_workforce/physicians_density/en/. Accessed 10 Apr 2019
Yoo, T.K., Kim, D.W., Choi, S.B., Park, J.S.: Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross-sectional study. PLoS ONE 11(2), e0148,724 (2016)
You, X., Du, L., Cheung, Y., Chen, Q.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19(12), 3271–3284 (2010)
Zheng, J., Ji, Z., Yu, K., An, Q., Guo, Z., Wu, Z.: A feature-based solution for 3d registration of ct and mri images of human knee. Signal Image Video Process. 9(8), 1815–1824 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saleem, M., Farid, M.S., Saleem, S. et al. X-ray image analysis for automated knee osteoarthritis detection. SIViP 14, 1079–1087 (2020). https://doi.org/10.1007/s11760-020-01645-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-020-01645-z