Skip to main content
Log in

X-ray image analysis for automated knee osteoarthritis detection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Knee issues are very frequent among people of all ages, and osteoarthritis is one of the most common reasons behind them. The primary feature in observing extremity and advancement of osteoarthritis is joint space narrowing (cartilage loss) which is manually computed on knee x-rays by a radiologist. Such manual inspections require an expert radiologist to analyze the x-ray image; moreover, it is a tedious and time-consuming task. In this paper, we present a computer-vision-based system that can assist the radiologists by analyzing the radiological symptoms in knee x-rays for osteoarthritis. Different image processing techniques have been applied on knee radiographs to enhance their quality. The knee region is extracted automatically using template matching. The knee joint space width is calculated, and the radiographs are classified based on the comparison with the standard normal knee joint space width. The experimental evaluation performed on a large knee x-ray dataset shows that our method is able to efficiently detect osteoarthritis, achieving more than 97% detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Altman, R., Gold, G.: Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr. Cartil. 15, A1–A56 (2007)

    Google Scholar 

  2. Altman, R., et al.: Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the osteoarthritis research society: results from a workshop. Osteoarthr. Cartil. 4(4), 217–243 (1996)

    Google Scholar 

  3. Andriacchi, T.P., et al.: Methods for evaluating the progression of osteoarthritis. J. Rehabil. Res. Dev. 37(2), 163–170 (2000)

    Google Scholar 

  4. Anifah, L., et al.: Osteoarthritis classification using self organizing map based on gabor kernel and contrast-limited adaptive histogram equalization. Open Biomed. Eng. J. 7, 18 (2013)

    Google Scholar 

  5. Antony, J., et al.: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: Machine Learning and Data Mining in Pattern Recognition, pp. 376–390 (2017)

  6. Barbour, K.E., Helmick, C.G., Boring, M., Brady, T.J.: Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation-united states, 2013–2015. Morb. Mortal. Wkly. Rep. 66(9), 246–253 (2017)

    Google Scholar 

  7. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Google Scholar 

  8. Cicuttini, F., et al.: Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheumatol. 52(7), 2033–2039 (2005)

    Google Scholar 

  9. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Google Scholar 

  10. Dacre, J., Scott, D., Da Silva, J., Welsh, G., Huskisson, E.: Joint space in radiologically normal knees. Rheumatology 30(6), 426–428 (1991)

    Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)

  12. Deng, C.X., Bai, T., Geng, Y.: Image edge detection based on wavelet transform and canny operator. In: International Conference on Wavelet Analysis and Pattern Recognition, pp. 355–359 (2009)

  13. Duan, J., Lu, W., Pan, Z., Bai, L.: New second order mumford-shah model based on \(\gamma \)-convergence approximation for image processing. Infrared Phys. Technol. 76, 641–647 (2016)

    Google Scholar 

  14. Duan, J., Qiu, Z., Lu, W., Wang, G., Pan, Z., Bai, L.: An edge-weighted second order variational model for image decomposition. Digit. Signal Process. 49, 162–181 (2016)

    Google Scholar 

  15. Duncan, S.T., et al.: Sensitivity of standing radiographs to detect knee arthritis: a systematic review of level i studies. Arthroscopy 31(2), 321–328 (2015)

    Google Scholar 

  16. ElTantawy, A., Shehata, M.S.: Local null space pursuit for real-time moving object detection in aerial surveillance. Signal Image Video Process 14(1), 87–95 (2019)

    Google Scholar 

  17. Farid, M.S., Lucenteforte, M., Grangetto, M.: DOST: a distributed object segmentation tool. Multimed. Tools Appl. 77(16), 20839–20862 (2018)

    Google Scholar 

  18. Farid, M.S., Mahmood, A.: Image morphing in frequency domain. J. Math. Imaging Vis. 42(1), 50–63 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Fatima, T., Farid, M.S.: Automatic detection of plasmodium parasites from microscopic blood images. J. Parasit Dis. (2019). https://doi.org/10.1007/s12639-019-01163-x

    Article  Google Scholar 

  20. Fawcett, T.: An introduction to roc analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    MathSciNet  Google Scholar 

  21. Galli, M., De Santis, V., Tafuro, L.: Reliability of the ahlbäck classification of knee osteoarthritis. Osteoarthr. Cartil. 11(8), 580–584 (2003)

    Google Scholar 

  22. Glyn-Jones, S., Palmer, A.J.R., Agricola, R., Price, A.J., Vincent, T.L., Weinans, H., Carr, A.J.: Osteoarthritis. Lancet 386(9991), 376–387 (2015)

    Google Scholar 

  23. Gonzalez, R.C., et al.: Digital image processing (2002)

  24. Gornale, S.S., Patravali, P.U., Manza, R.R.: Detection of osteoarthritis using knee x-ray image analyses: a machine vision based approach. Int. J. Comput. Vis. 145(1), 20–26 (2016)

    Google Scholar 

  25. Hassan, G., Hassanien, A.E.: Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. Signal Image Video Process. 12(2), 263–270 (2018)

    Google Scholar 

  26. Kellegren, J.H., Lawrence, J.S.: Radiological assessment of osteoarthritis. Ann. Rheum. Dis. 16(4), 494–501 (1957)

    Google Scholar 

  27. Khan, M.H., Farid, M.S., Grzegorzek, M.: Spatiotemporal features of human motion for gait recognition. Signal Image Video Process. 13(2), 369–377 (2019)

    Google Scholar 

  28. Khan, M.H., Helsper, J., Farid, M.S., Grzegorzek, M.: A computer vision-based system for monitoring vojta therapy. Int. J. Med. Inform. 113, 85–95 (2018)

    Google Scholar 

  29. Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)

    Google Scholar 

  30. Li, S., Wang, S., Zhang, D., Feng, C., Shi, L.: Real-time smoke removal for the surveillance images under fire scenario. Signal Image Video Process. 13(5), 1037–1043 (2019)

    Google Scholar 

  31. Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149, 736–751 (2015)

    Google Scholar 

  32. Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Methods Appl. Sci. 39(14), 4208–4233 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Matthews, B.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 405(2), 442–451 (1975)

    Google Scholar 

  34. Mengko, T.L., Wachjudi, R., Suksmono, A., Danudirdjo, D.: Automated detection of unimpaired joint space for knee osteoarthritis assessment. In: HEALTHCOM, pp. 400–403 (2015)

  35. Navale, D.I., Hegadi, R.S., Mendgudli, N.: Block based texture analysis approach for knee osteoarthritis identification using svm. In: IEEE WIECON-ECE, pp. 338–341 (2015)

  36. Pandey, M.S., Rajitha, B., Agarwal, S.: Computer assisted automated detection of knee osteoarthritis using x-ray images. Sci. Technol. 1(2), 74–79 (2015)

    Google Scholar 

  37. Peterfy, C., et al.: Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skelet Radiol. 32(3), 128–132 (2003)

    Google Scholar 

  38. Piperno, M., et al.: Quantificative evaluation of joint space width in femorotibal osteoarthritis: comparison of three radiographic views. Osteoarthr. Cartil. 6(4), 252–259 (1998)

    Google Scholar 

  39. Schmidt, J., Amrami, K., Manduca, A., Kaufman, K.: Semi-automated digital image analysis of joint space width in knee radiographs. Skelet Radiol. 34(1), 639–43 (2005)

    Google Scholar 

  40. Segal, N.A., Nevitt, M.C., Lynch, J.A., Niu, J., Torner, J.C., Guermazi, A.: Diagnostic performance of 3d standing ct imaging for detection of knee osteoarthritis features. Physician Sportsmed. 43(3), 213–220 (2015)

    Google Scholar 

  41. Shafizadegan, Z., Karimi, M.T., Shafizadegan, F., Rezaeian, Z.S.: Evaluation of ground reaction forces in patients with various severities of knee osteoarthritis. J. Mech. Med. Biol 16(02), 1650,003 (2016)

    Google Scholar 

  42. Shamir, L., Ling, S., et al.: Knee x-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 56(2), 407–415 (2009)

    Google Scholar 

  43. Shamir, L., et al.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr. Cartil. 17(10), 1307–1312 (2009)

    Google Scholar 

  44. Stachowiak, G.W., Wolski, M., Woloszynski, T., Podsiadlo, P.: Detection and prediction of osteoarthritis in knee and hand joints based on the x-ray image analysis. Biosurf. Biotribol. 2(4), 162–172 (2016)

    Google Scholar 

  45. Subramoniam, M., Rajini, V.: Local binary pattern approach to the classification of osteoarthritis in knee x-ray images. Asian J. Sci. Res. 6(4), 805–811 (2013)

    Google Scholar 

  46. Subramoniam, M., Rajini, V.: Support vector machine approach for the diagnosis of arthritis from digital x-ray images using local ternary pattern. Indian J. Appl. Res. 36(4), 201–203 (2013)

    Google Scholar 

  47. Tazeem, H., Farid, M.S., Mahmood, A.: Improving security surveillance by hidden cameras. Multimed. Tools Appl. 76(2), 2713–2732 (2017)

    Google Scholar 

  48. Thomson, J., O’Neill, T., Felson, D., Cootes, T.: Automated shape and texture analysis for detection of osteoarthritis from radiographs of the knee. MICCAI 2015, 127–134 (2015)

    Google Scholar 

  49. Tiulpin, A., Thevenot, J., et al.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1), 1727 (2018)

    Google Scholar 

  50. Wang, P., Zhu, H., Ling, X.: Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE. Signal Image Video Process. 14(1), 29–37 (2019)

    Google Scholar 

  51. World Health Organization: Global Health Observatory (GHO) data (2019). https://www.who.int/gho/health_workforce/physicians_density/en/. Accessed 10 Apr 2019

  52. Yoo, T.K., Kim, D.W., Choi, S.B., Park, J.S.: Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross-sectional study. PLoS ONE 11(2), e0148,724 (2016)

    Google Scholar 

  53. You, X., Du, L., Cheung, Y., Chen, Q.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19(12), 3271–3284 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Zheng, J., Ji, Z., Yu, K., An, Q., Guo, Z., Wu, Z.: A feature-based solution for 3d registration of ct and mri images of human knee. Signal Image Video Process. 9(8), 1815–1824 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid Farid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Farid, M.S., Saleem, S. et al. X-ray image analysis for automated knee osteoarthritis detection. SIViP 14, 1079–1087 (2020). https://doi.org/10.1007/s11760-020-01645-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01645-z

Keywords

Navigation