Skip to main content

An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution

Abstract

This paper presents an efficient methodology based on empirical wavelet transform (EWT) to remove cross-terms from the Wigner–Ville distribution (WVD). An EWT-based filter bank method is suggested to remove the cross-terms that occur due to nonlinearity in modulation. The mean-square error-based filter bank bandwidth selection is done which has been applied for the boundaries selection in EWT. In this way, a signal-dependent adaptive boundary selection is performed. Thereafter, energy-based segmentation is applied in time domain to eliminate inter-cross-terms generated between components. Moreover, the WVD of all the components is added together to produce a complete cross-terms-free time–frequency distribution. The proposed method is compared with other existing methods, and normalized Rényi entropy measure is also computed for validating the performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Andria, G., Savino, M.: Interpolated smoothed pseudo Wigner–Ville distribution for accurate spectrum analysis. IEEE Trans. Instrum. Meas. 45, 818–823 (1996)

    Article  Google Scholar 

  2. 2.

    Boashash, B.: Time–Frequency Signal Analysis and Processing: A Comprehensive Reference. Elsevier, Amsterdam (2003)

    Google Scholar 

  3. 3.

    Baydar, N., Ball, A.: A comparative study of acoustic and vibration signals in detection of gear failures using Wigner–Ville distribution. Mech. Syst. Signal Process. 15, 1091–1107 (2001)

    Article  Google Scholar 

  4. 4.

    Bhattacharyya, A., Pachori, R.B.: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64, 2003–2015 (2017)

    Article  Google Scholar 

  5. 5.

    Bhattacharyya, A., Singh, L., Pachori, R.B.: Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Process. 78, 185–196 (2018)

    Article  Google Scholar 

  6. 6.

    Chen, J., Pan, J., Li, Z., Zi, Y., Chen, X.: Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renew. Energy 89, 80–92 (2016)

    Article  Google Scholar 

  7. 7.

    Chen, V.C., Ling, H.: Time–Frequency Transforms for Radar Imaging and Signal Analysis. Artech House, Norwood (2002)

    MATH  Google Scholar 

  8. 8.

    Choi, H.I., Williams, W.J.: Improved time–frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoust. Speech Signal Process. 37, 862–871 (1989)

    Article  Google Scholar 

  9. 9.

    Claasen, T.A.C.M., Mecklenbrauker, W.F.G.: The Wigner distribution—a tool for time–frequency signal analysis. Part I: continuous-time signals. Philips J. Res 35(3), 217–250 (1980)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Climente-Alarcon, V., Antonino-Daviu, J.A., Riera-Guasp, M., Vlcek, M.: Induction motor diagnosis by advanced notch FIR filters and the Wigner–Ville distribution. IEEE Trans. Ind. Electron. 61, 4217–4227 (2014)

    Article  Google Scholar 

  11. 11.

    Daubechies, I.: Ten Lectures on Wavelets, vol. 61. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  12. 12.

    Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62, 531–544 (2014)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Flandrin, P., Escudié, B.: An interpretation of the pseudo-Wigner–Ville distribution. Signal Process. 6, 27–36 (1984)

    Article  Google Scholar 

  14. 14.

    Gaikwad, C.J., Sircar, P.: Reduced interference Wigner–Ville time frequency representations using signal support information. In: 2016 IEEE Annual India Conference, pp. 1–5. IEEE (2016)

  15. 15.

    Gaikwad, C.J., Sircar, P.: Bispectrum-based technique to remove cross-terms in quadratic systems and Wigner–Ville distribution. Signal Image Video Process. 12(4), 703–710 (2018)

    Article  Google Scholar 

  16. 16.

    Gavrovska, A., Bogdanović, V., Reljin, I., Reljin, B.: Automatic heart sound detection in pediatric patients without electrocardiogram reference via pseudo-affine Wigner–Ville distribution and Haar wavelet lifting. Comput. Methods Programs Biomed. 113, 515–528 (2014)

    Article  Google Scholar 

  17. 17.

    Gilles, J.: Empirical wavelet transform. IEEE Trans. Signal Process. 61, 3999–4010 (2013)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Hu, X., Peng, S., Hwang, W.L.: EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM–FM signals. IEEE Trans. Signal Process. 60, 1075–1086 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–995. The Royal Society (1998)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Jain, P., Pachori, R.B.: Time-order representation based method for epoch detection from speech signals. J. Intell. Syst. 21, 79–95 (2012)

    Google Scholar 

  21. 21.

    Jain, P., Pachori, R.B.: Marginal energy density over the low frequency range as a feature for voiced/non-voiced detection in noisy speech signals. J. Frankl. Inst. 350, 698–716 (2013)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kadambe, S., Boudreaux-Bartels, G.F.: A comparison of the existence of ‘cross terms’ in the Wigner distribution and the squared magnitude of the wavelet transform and the short-time Fourier transform. IEEE Trans. Signal Process. 40, 2498–2517 (1992)

    Article  Google Scholar 

  23. 23.

    Kazemi, K., Amirian, M., Dehghani, M.J.: The S-transform using a new window to improve frequency and time resolutions. Signal Image Video Process. 8(3), 533–541 (2014)

    Article  Google Scholar 

  24. 24.

    Stankovic, L., Daković, M., Thayaparan, T.: Time–Frequency Signal Analysis with Applications. Artech House, Norwood (2013)

    MATH  Google Scholar 

  25. 25.

    Liu, W., Cao, S., Chen, Y.: Seismic time–frequency analysis via empirical wavelet transform. IEEE Geosci. Remote Sens. Lett. 13, 28–32 (2016)

    Article  Google Scholar 

  26. 26.

    Meyer, Y.: Wavelets and Operators, vol. 1. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  27. 27.

    Pachori, R.B., Nishad, A.: Cross-terms reduction in the Wigner–Ville distribution using tunable-Q wavelet transform. Signal Process. 120, 288–304 (2016)

    Article  Google Scholar 

  28. 28.

    Pachori, R.B., Sircar, P.: A new technique to reduce cross terms in the Wigner distribution. Digit. Signal Process. 17, 466–474 (2007)

    Article  Google Scholar 

  29. 29.

    Pachori, R.B., Sircar, P.: Time–frequency analysis using time-order representation and Wigner distribution. In: 2008 IEEE Region 10 Conference, pp. 1–6 (2008)

  30. 30.

    Ping, D., Zhao, P., Deng, B.: Cross-terms suppression in Wigner–Ville distribution based on image processing. In: 2010 IEEE International Conference on Information and Automation, pp. 2168–2171. IEEE (2010)

  31. 31.

    Ren, H., Ren, A., Li, Z.: A new strategy for the suppression of cross-terms in pseudo Wigner–Ville distribution. Signal Image Video Process. 10, 139–144 (2016)

    Article  Google Scholar 

  32. 32.

    Sharma, R.R., Pachori, R.B.: A new method for non-stationary signal analysis using eigenvalue decomposition of the Hankel matrix and Hilbert transform. In: Fourth International Conference on Signal Processing and Integrated Networks, pp. 484–488. IEEE (2017)

  33. 33.

    Sharma, R.R., Pachori, R.B.: Eigenvalue decomposition of Hankel matrix based time–frequency representation for complex signals. Circuits Syst. Signal Process. 37(8), 3313–3329 (2018)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Sharma, R.R., Pachori, R.B.: Improved eigenvalue decomposition based approach for reducing cross-terms in Wigner–Ville distribution. Circuits Syst. Signal Process. 37(8), 3330–3350 (2018)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Sharma, R.R., Pachori, R.B.: Time–frequency representation using IEVDHM–HT with application to classification of epileptic EEG signals. IET Sci. Meas. Technol. 12, 72–82 (2018)

    Article  Google Scholar 

  36. 36.

    Stanković, L.: A measure of some time–frequency distributions concentration. Signal Process. 81, 621–631 (2001)

    Article  Google Scholar 

  37. 37.

    Upadhyay, A., Pachori, R.B.: Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition. J. Frankl. Inst. 352, 2679–2707 (2015)

    Article  Google Scholar 

  38. 38.

    Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  39. 39.

    Wu, Y., Li, X.: Elimination of cross-terms in the Wigner–Ville distribution of multi-component LFM signals. IET Signal Process. 11(6), 657–662 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rishi Raj Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.R., Kalyani, A. & Pachori, R.B. An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution. SIViP 14, 249–256 (2020). https://doi.org/10.1007/s11760-019-01549-7

Download citation

Keywords

  • Time–frequency representation
  • Wigner–Ville distribution
  • Empirical wavelet transform
  • Cross-terms
  • Non-stationary signals