Abstract
Recently, accurate detection of moving objects has achieved via principal component pursuit (PCP). However, in the case of aerial imagery, existing PCP-based detection methods suffer from low accuracy and/or high computational loads. This paper presents a novel S-PCP method, called local null space pursuit (LNSP), which achieves a high detection accuracy and real-time performance on aerial images. LNSP models the background as a subspace that lies in a low-dimensional subspace, while the moving objects are modelled as sparse. Based on these two models, LNSP proposes a new formulation for the detection problem by using multiple local null spaces and \(\ell _1\)-norm. The performance of LNSP is evaluated on challenging aerial datasets and then compared the results with relevant current state-of-the-art methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Balzano, L., Nowak, R., Recht, B.: Online identification and tracking of subspaces from highly incomplete information. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing, pp. 704–711. IEEE (2010)
Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? JACM 58(3), 11 (2011)
Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. CVIU 117(6), 633–659 (2013)
Chau, G., Rodrıguez, P.: Panning and jitter invariant incremental principal component pursuit for video background modeling. In: IEEE Conference on CVPR, pp. 1844–1852. IEEE (2017)
Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: IEEE Inter Workshop on Performance Evaluation of Tracking and Surveillance, pp. 17–24 (2005)
Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M., et al.: Eco: Efficient convolution operators for tracking. In: CVPR, vol. 1, p. 3 (2017)
Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)
Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)
ElTantawy, A., Shehata, M.S.: Moving object detection from moving platforms using Lagrange multiplier. In: 2015 IEEE Inter Conf on ICIP, pp. 2586–2590. IEEE (2015)
ElTantawy, A., Shehata, M.S.: Ut-maro: Unscented transformation and matrix rank optimization for moving objects detection in aerial imagery. In: Inter Symposium on Visual Computing, pp. 275–284. Springer (2015)
ElTantawy, A., Shehata, M.S.: A novel method for segmenting moving objects in aerial imagery using matrix recovery and physical spring model. In: 2016 23rd Inter Conference on ICPR, pp. 3898–3903. IEEE (2016)
ElTantawy, A., Shehata, M.S.: MARO: matrix rank optimization for the detection of small-size moving objects from aerial camera platforms. Signal Image Video Process. 12(4), 641–649 (2017)
ElTantawy, A., Shehata, M.S.: KRMARO: aerial detection of small-size ground moving objects using kinematic regularization and matrix rank optimization. IEEE Trans. Circuit Syst. Video Technol. 29(6), 1672–1686 (2018). https://doi.org/10.1109/TCSVT.2018.2843761
Feng, J., Xu, H., Yan, S.: Online robust pca via stochastic optimization. In: Advances in Neural Information Processing Systems, pp. 404–412 (2013)
Guo, H., Qiu, C., Vaswani, N.: An online algorithm for separating sparse and low-dimensional signal sequences from their sum. IEEE Trans. Signal Process. 62(16), 4284–4297 (2014)
Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, Boca Raton (2015)
He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: 2012 IEEE Conference on CVPR, pp. 1568–1575. IEEE (2012)
Hoffman, K., Kunze, R.: Linear Algebra. Pearson, Upper Saddle River (1971)
Mansour, H.: A short note on improved roseta. arXiv preprint arXiv:1710.05961 (2017)
Mansour, H., Jiang, X.: A robust online subspace estimation and tracking algorithm. In: 2015 IEEE International Conference on ICASSP, pp. 4065–4069. IEEE (2015)
Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.C., Lee, J.T., Mukherjee, S., Aggarwal, J., Lee, H., Davis, L., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: 2011 IEEE Conference on CVPR, pp. 3153–3160. IEEE (2011)
Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans. PAMI 35(2), 450–462 (2013)
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In: 2010 IEEE International Conference on CVPR, pp. 763–770. IEEE (2010)
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. PAMI 34(11), 2233–2246 (2012)
Qiu, C., Vaswani, N.: Reprocs: A missing link between recursive robust PCA and recursive sparse recovery in large but correlated noise. arXiv preprint arXiv:1106.3286 (2011)
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Rodriguez, P., Wohlberg, B.: Fast principal component pursuit via alternating minimization. In: 2013 20th IEEE International Conference on ICIP, pp. 69–73. IEEE (2013)
Rodriguez, P., Wohlberg, B.: Incremental principal component pursuit for video background modeling. J. Math. Imaging Vis. 55(1), 1–18 (2016)
Rodrıguez, P., Wohlberg, B.: An incremental principal component pursuit algorithm via projections onto the l1 ball. In: XXIV Inter Congress of Electrical Engineering, Electronics and Computing (2017)
Shakeri, M., Zhang, H.: Corola: A sequential solution to moving object detection using low-rank approximation. arXiv preprint arXiv:1505.03566 (2015)
Shakeri, M., Zhang, H.: Corola: a sequential solution to moving object detection using low-rank approximation. Comput. Vis. Image Underst. 146, 27–39 (2016)
Veon, K.L., Mahoor, M.H., Voyles, R.M.: Video stabilization using sift-me features and fuzzy clustering. In: 2011 IEEE/RSJ International Conference on IROS, pp. 2377–2382. IEEE (2011)
Xu, J., Ithapu, V.K., Mukherjee, L., Rehg, J.M., Singh, V.: Gosus: Grassmannian online subspace updates with structured-sparsity. In: 2013 IEEE International Conference on ICCV, pp. 3376–3383. IEEE (2013)
Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. PAMI 35(3), 597–610 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
ElTantawy, A., Shehata, M.S. Local null space pursuit for real-time moving object detection in aerial surveillance. SIViP 14, 87–95 (2020). https://doi.org/10.1007/s11760-019-01528-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-019-01528-y