Advertisement

Adaptive histogram equalization based on modified probability density function and expected value of image intensity

  • C. K. Sirajuddeen
  • Shubhi KansalEmail author
  • Rajiv Kumar Tripathi
Original Paper
  • 25 Downloads

Abstract

Most of the adaptive histogram equalization methods enhanced the image locally instead of global enhancement. In this paper, a global enhancement method is proposed which is based on modified probability density function and expected value of image intensity. Adaptiveness is introduced here in the form of expected value of image intensity. This method can be very well utilized in all the display devices. The proposed method is compared with the state-of the-art other contrast enhancement techniques. Experimental results show that the proposed method surpasses the other techniques both quantitatively and qualitatively.

Keywords

Clipping Modification Transformation function 

Notes

References

  1. 1.
    Aquino-Morínigo, P.B., Lugo-Solís, F.R., Pinto-Roa, D.P., Ayala, H.L., Noguera, J.L.: Bi-histogram equalization using two plateau limits. Signal Image Video Process. 11(5), 857–864 (2017)CrossRefGoogle Scholar
  2. 2.
    Pineda, I.A.B., Caballero, R.D.M., Silva, J.J.C., Roman, J.C.M., Noguera, J.L.: Quadri-histogram equalization using cutoff limits based on the size of each histogram with preservation of average brightness. Signal Image Video Process. https://doi.org/10.1007/s11760-019-01420-9 (2019)
  3. 3.
    Kamandar, M.: Automatic color image contrast enhancement using gaussian mixture modeling, piecewise linear transformation and monotone piecewise cubic interpolant. Signal Image Video Process. 12(4), 625–632 (2018)CrossRefGoogle Scholar
  4. 4.
    Tunga, B., Kocanaogullari, A.: Digital image decomposition and contrast enhancement using high dimensional model representation. Signal Image Video Process. 12(2), 299–306 (2018)CrossRefGoogle Scholar
  5. 5.
    Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)CrossRefGoogle Scholar
  7. 7.
    Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)CrossRefGoogle Scholar
  8. 8.
    Chen, S.D., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, S.D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)CrossRefGoogle Scholar
  10. 10.
    Sim, K.S., Tso, C.P., Tan, Y.Y.: Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognit. Lett. 28(10), 1209–1221 (2007)CrossRefGoogle Scholar
  11. 11.
    Kim, M., Chung, M.: Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans. Consum. Electron. 54(3), 1389–1397 (2008)CrossRefGoogle Scholar
  12. 12.
    Singh, K., Kapoor, R.: Image enhancement using exposure based sub image histogram equalization. Pattern Recognit. Lett. 36, 10–14 (2014)CrossRefGoogle Scholar
  13. 13.
    Tang, J.R., Isa, N.A.M.: Intensity exposure-based bi-histogram equalization for image enhancement. Turk. J. Electr. Eng. Comput. Sci. 24, 3564–3585 (2016)CrossRefGoogle Scholar
  14. 14.
    Park, S., Yu, S., Moon, B., Ko, S., Paik, J.: Low-light image enhancement using variational optimization-based retinex model. IEEE Trans. Consum. Electron. 63(2), 178–184 (2017)CrossRefGoogle Scholar
  15. 15.
    Tang, J.R., Isa, N.A.M.: Bi-histogram equalization using modified histogram bins. App. Soft Comput. 55, 31–43 (2017)CrossRefGoogle Scholar
  16. 16.
    Xue, W., Zhang, L., Mou, X.: Gradient magnitude similarity deviation:a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Parihar, A.S., Verma, O.P.: Contrast enhancement using entropy-based dynamic sub-histogram equalization. IET Image Process. 10(11), 799–808 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Technology, DelhiNew DelhiIndia

Personalised recommendations