Skip to main content
Log in

Adaptive histogram equalization based on modified probability density function and expected value of image intensity

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Most of the adaptive histogram equalization methods enhanced the image locally instead of global enhancement. In this paper, a global enhancement method is proposed which is based on modified probability density function and expected value of image intensity. Adaptiveness is introduced here in the form of expected value of image intensity. This method can be very well utilized in all the display devices. The proposed method is compared with the state-of the-art other contrast enhancement techniques. Experimental results show that the proposed method surpasses the other techniques both quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aquino-Morínigo, P.B., Lugo-Solís, F.R., Pinto-Roa, D.P., Ayala, H.L., Noguera, J.L.: Bi-histogram equalization using two plateau limits. Signal Image Video Process. 11(5), 857–864 (2017)

    Article  Google Scholar 

  2. Pineda, I.A.B., Caballero, R.D.M., Silva, J.J.C., Roman, J.C.M., Noguera, J.L.: Quadri-histogram equalization using cutoff limits based on the size of each histogram with preservation of average brightness. Signal Image Video Process. https://doi.org/10.1007/s11760-019-01420-9 (2019)

  3. Kamandar, M.: Automatic color image contrast enhancement using gaussian mixture modeling, piecewise linear transformation and monotone piecewise cubic interpolant. Signal Image Video Process. 12(4), 625–632 (2018)

    Article  Google Scholar 

  4. Tunga, B., Kocanaogullari, A.: Digital image decomposition and contrast enhancement using high dimensional model representation. Signal Image Video Process. 12(2), 299–306 (2018)

    Article  Google Scholar 

  5. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  6. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  7. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  8. Chen, S.D., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003)

    Article  Google Scholar 

  9. Chen, S.D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  10. Sim, K.S., Tso, C.P., Tan, Y.Y.: Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognit. Lett. 28(10), 1209–1221 (2007)

    Article  Google Scholar 

  11. Kim, M., Chung, M.: Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans. Consum. Electron. 54(3), 1389–1397 (2008)

    Article  Google Scholar 

  12. Singh, K., Kapoor, R.: Image enhancement using exposure based sub image histogram equalization. Pattern Recognit. Lett. 36, 10–14 (2014)

    Article  Google Scholar 

  13. Tang, J.R., Isa, N.A.M.: Intensity exposure-based bi-histogram equalization for image enhancement. Turk. J. Electr. Eng. Comput. Sci. 24, 3564–3585 (2016)

    Article  Google Scholar 

  14. Park, S., Yu, S., Moon, B., Ko, S., Paik, J.: Low-light image enhancement using variational optimization-based retinex model. IEEE Trans. Consum. Electron. 63(2), 178–184 (2017)

    Article  Google Scholar 

  15. Tang, J.R., Isa, N.A.M.: Bi-histogram equalization using modified histogram bins. App. Soft Comput. 55, 31–43 (2017)

    Article  Google Scholar 

  16. Xue, W., Zhang, L., Mou, X.: Gradient magnitude similarity deviation:a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)

    Article  MathSciNet  Google Scholar 

  17. Parihar, A.S., Verma, O.P.: Contrast enhancement using entropy-based dynamic sub-histogram equalization. IET Image Process. 10(11), 799–808 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhi Kansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirajuddeen, C.K., Kansal, S. & Tripathi, R.K. Adaptive histogram equalization based on modified probability density function and expected value of image intensity. SIViP 14, 9–17 (2020). https://doi.org/10.1007/s11760-019-01516-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01516-2

Keywords

Navigation