Skip to main content

Human activity classification using long short-term memory network


Activities of daily living (ADL) can be used to identify a person’s daily routine which helps health professionals to provide preventive healthcare. Classification of ADLs is therefore very important. In this study, long short-term memory (LSTM) network, which is an extension of recurrent neural networks, is used. Data collected in MobiAct data set are used to train and test the network. An accuracy of 0.90 is achieved using LSTM network.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Mathie, M.J., Coster, A.C.F., Lovell, N.H., Celler, B.G., Lord, S.R., Tiedemann, A.: A pilot study of long-term monitoring of human movements in the home using accelerometry. J. Telemed. Telecare 10, 1–8 (2004)

    Article  Google Scholar 

  2. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bla, C.J., Robert, P.: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 50, 711–723 (2003)

    Article  Google Scholar 

  3. Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Physiol. Meas. 27, 935–951 (2006)

    Article  Google Scholar 

  4. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10, 156–167 (2006)

    Article  Google Scholar 

  5. Lindemann, U., Hock, A., Stuber, M., Keck, W., Becker, C.: Evaluation of a fall detector based on accelerometers: a pilot study. Med. Biol. Eng. Comput. 43, 548–551 (2005)

    Article  Google Scholar 

  6. Bourke, A.K., Brien, J.V.O., Lyons, G.M.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 26, 194–199 (2007)

    Article  Google Scholar 

  7. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28, 285–291 (2008)

    Article  Google Scholar 

  8. Zheng, Y.: Human activity recognition based on the hierarchical feature selection and classification framework. J. Electr. Comput. Eng. 2015, 9 (2015)

    Article  Google Scholar 

  9. Li, W., Xu, Y., Tan, B., Piechocki, R.J.: Passive wireless sensing for unsupervised human activity recognition in healthcare. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1528–1533 (2017)

  10. Hegde, N., Bries, M., Swibas, T., Melanson, E., Sazonov, E.: Automatic recognition of activities of daily living utilizing insole based and wrist worn wearable sensors. IEEE J. Biomed. Health Inform. 99, 1 (2018)

    Google Scholar 

  11. Vepakomma, P., De, D., Das, S.K., Bhansali, S.: A-Wristocracy: deep learning on wrist-worn sensing for recognition of user complex activities. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6 (2015)

  12. And, B., Baglio, S., Lombardo, C.O., Marletta, V.: A multisensor data-fusion approach for ADL and fall classification. IEEE Trans. Instrum. Meas. 65, 1960–1967 (2016)

    Article  Google Scholar 

  13. Awais, M., Palmerini, L., Chiari, L.: Physical activity classification using body-worn inertial sensors in a multi-sensor setup. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 1–4 (2016)

  14. Semwal, V.B., Gaud, N., Nandi, G.C.: Human gait state prediction using cellular automata and classification using ELM. MISP, vol. 748, pp. 135–145 (2017)

  15. Semwal, V.B., Raj, M., Nandi, G.C.: Biometric gait identification based on a multilayer perceptron. Robot. Auton. Syst. 65, 65–75 (2015)

    Article  Google Scholar 

  16. Murad, A., Pyun, J.Y.: Deep recurrent neural networks for human activity recognition. Sensors 17(11), 2556 (2017).

    Article  Google Scholar 

  17. Heffernan, R., Yang, Y., Paliwal, K., Zhou, Y.: Capturing non-local interactions by long short term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers, and solvent accessibility. Struct. Bioinform. 33, 2842–2849 (2017)

    Article  Google Scholar 

  18. Zhang, Y., Xiong, R., He, H., Pecht, M.: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 99, 1 (2018)

    Article  Google Scholar 

  19. Long short-term memory networks. (2018). Accessed 6 Sep 2018

  20. Vavoulas, G., Chatzaki, C., Malliotakis, T., Pediaditis, M., Tsiknakis, M.: The MobiAct dataset: recognition of activities of daily living using smartphones. In: International Conference on Information and Communication Technologies for Ageing Well and e-Health, pp. 143–151 (2016)

  21. Chen, Y., Zhong, K., Zhang, J., Sun, Q., Zhao, X.: LSTM networks for mobile human activity recognition. In: International Conference on Artificial Intelligence: Technologies and Applications (ICAITA) (2016)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anuradhi Malshika Welhenge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malshika Welhenge, A., Taparugssanagorn, A. Human activity classification using long short-term memory network. SIViP 13, 651–656 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Deep learning
  • ADL
  • LSTM
  • RNN