Signal, Image and Video Processing

, Volume 13, Issue 3, pp 507–515 | Cite as

Key frame extraction for video summarization using local description and repeatability graph clustering

  • Hana GharbiEmail author
  • Sahbi Bahroun
  • Ezzeddine Zagrouba
Original Paper


Due to video data exponential growth supported by quick advances in multimedia technology, it became difficult for the user to retrieve information from a large videos collection. Key frame extraction consists in providing an abstract of the entire video, containing the most informative frames. In this paper, we present an efficient key frame extraction method. This method is based on local interest points description and repeatability graph clustering via approaching modularity value. To minimize the data to be treated, the process will be applied only on a set candidate frames selected with a windowing rule. Indeed, the first step consists in extracting interest points on a set of candidate frames. After that, we compute repeatability values between each two frames from the candidate set. These values are represented by a repeatability direct graph. The selection of key frames is performed using graph clustering by approaching modularity principle. The experiments performed showed that the proposed method succeeds in extracting key frames that preserve the relevant video content without redundancy.


Video summary Key frames extraction LBP descriptor Graph clustering Modularity 


  1. 1.
    Furini, M., Geraci, F., Pellegrini, M.: STIMO: still and moving video storyboard for the web scenario. Multimed. Tools Appl. 46, 47–69 (2010)CrossRefGoogle Scholar
  2. 2.
    Liu, X., Song, M.L., Zhang, L.M., Wang, S.L.: Joint shot boundary detection and key frame extraction. In: Proceedings of the 21st International Conference on Pattern Recognition, pp. 2565–2568 (2012)Google Scholar
  3. 3.
    Husnain, A.M., Ashraf, M., Shakir, M., Abbas, Y., Shah, F.A.: Video summarization: techniques and classification. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 13(1), pp. 7594(2012)Google Scholar
  4. 4.
    Gygli, M., Grabner, H., Riemen Schneider, H. et al.: Creating summaries from user videos. In: Computer Vision-ECCV, pp. 505–520. Springer, Berlin (2014)Google Scholar
  5. 5.
    Tsai, C.M., Kang, L.W., Lin, C.W., et al.: Scene-based movie summarization via role-community networks. IEEE Trans. Circuits Syst. Video Technol. 23(11), 1927–1940 (2013)CrossRefGoogle Scholar
  6. 6.
    Boukadida, H.: Création automatique de résumés vidéo par programmation par contraintes. Doctoral dissertation, Université Rennes 1 (2015)Google Scholar
  7. 7.
    Tonomura, Y., Akutsu, A., Otsugi, K., Sadakata, T.: VideoMAP and VideoSpaceIcon: tools for anatomizing video content. In: Proceedings of the INTERACT'93 and CHI'93 Conference on Human Factors in Computing Systems. ACM, pp. 131–136 (1993)Google Scholar
  8. 8.
    Pentland, A., Picard, R., Davenport, G., Haase, K.: Video and image semantics: advanced tools for telecommunications. IEEE Multimed. 1, 73–75 (1994)Google Scholar
  9. 9.
    Rui, Y., Huang, T., Mehrotra, S.: Relevance feedback techniques in interactive content-based image retrieval. Trans. Circuits Video Technol. (1998)Google Scholar
  10. 10.
    Barhoumi, W., Zagrouba, E.: On-the-fly extraction of key frames for efficient video summarization. In: AASRI Conference on Intelligent Systems and Control Procedia, pp. 78–84 (2013)Google Scholar
  11. 11.
    Yuan, Z., Lu, T., Wu, D., Huang, Y., Yu, H.: Video summarization with semantic concept preservation. In: 10th International Conference on Mobile and Ubiquitous Multimedia, NY, USA, pp. 109–112Google Scholar
  12. 12.
    Zhu, X., Loy, C.C., Gong, S.: Video synopsis by heterogeneous multi-source correlation. In: IEEE International Conference on Computer Vision, DC, USA, pp. 81–88 (2013)Google Scholar
  13. 13.
    Omidyeganeh, M., Ghaemmaghami, S., Shirmohammadi, S.: Group-based spatio-temporal video analysis and abstraction using wavelet parameters. Signal Image Video Process. 7, 787 (2013)CrossRefGoogle Scholar
  14. 14.
    Sabbar, W., Chergui, A. Bekkhoucha, A.: Video summarization using shot segmentation and local motion estimation. In: International Conference on Innovative Computing Technology (INTECH), pp. 18–20 (2012)Google Scholar
  15. 15.
    Tapu, R., Zaharia, T.: A complete framework for temporal video segmentation. In: IEEE International Conference on Consumer Electronics, pp. 156–160 (2011)Google Scholar
  16. 16.
    Yuan, Z., Lu, T., Wu, D., Yu Huang, H.Y.: Video summarization with semantic concept preservation. In: International Conference on Mobile and Ubiquitous Multimedia, pp. 109–112 (2011)Google Scholar
  17. 17.
    Gharbi, H., Bahroun, S., Zagrouba, E.: A novel key frame extraction approach for video summarization. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 3, pp. 148–155 (2016)Google Scholar
  18. 18.
    Avila, E.F., Lopes, P.B., Luz Jr., A., Araújo, A.A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32, 56–68 (2011)CrossRefGoogle Scholar
  19. 19.
    Mundur, P., Rao, Y., Yesha, Y.: Key-frame-based video summarization using delaunay clustering. Int. J. Digit. Libr. 6, 219–232 (2006)CrossRefGoogle Scholar
  20. 20.
    Furini, M., Geraci, F., Montangero, M., Pellegrini, M.: STIMO: STIll and MOving video storyboard for the Web scenario. In: Multimedia Tools and Applications, vol. 46, pp. 47–69. Kluwer, Dordrecht (2010)Google Scholar
  21. 21.
    Asadi, E., Charkari, N.M.: Video summarization using fuzzy Cmeans clustering. In: IEEE 20th Iranian Conference on Electrical Engineering, pp. 690–694 (2012)Google Scholar
  22. 22.
    Hannane, R., Elboushaki, A., Afdel, K., Naghabhushan, P., Jave, M.: An efficient method for video shot boundary detection and Key-Frame extraction using SIFT-point distribution histogram. Int J Multimed. Inf. Retr. 5(2), 89–104 (2016)CrossRefGoogle Scholar
  23. 23.
    Vila, M., Bardera, A., Xu, Q., et al.: Tsallis entropy-based information measures for shot boundary detection and keyframe selection. Signal Image Video Process. 7, 507 (2013)CrossRefGoogle Scholar
  24. 24.
    Gharbi, H., Massaoudi, M., Bahroun, S., Zagrouba, E.: Key frames extraction based on local features for efficient video summarization. In: Advanced Concepts for Intelligent Vision Systems, pp. 275–285 (2016)Google Scholar
  25. 25.
    Barbieri, T.T., Rudinei, G.: KS-SIFT: a key-frame extraction method based on local features. In: ISM: IEEE International Symposium on Multimedia, pp. 13–17 (2014)Google Scholar
  26. 26.
    Li, J.: Video shot segmentation and key frame extraction based on SIFT feature. In: International Conference on Image Analysis and Signal Processing, pp. 1–8 (2012)Google Scholar
  27. 27.
    Gharbi, H., Bahroun, S., Zagrouba, E.: Robust interest points matching based on local description and spatial constraints. In: Sixth International Conference on Graphic and Image Processing (ICGIP 2014), pp. 944331–944331. International Society for Optics and Photonics (2015)Google Scholar
  28. 28.
    Chugh, I., Gupta, R., Kumar, R., Sahay, P.: Techniques for key frame extraction: shot segmentation and feature trajectory computation. In: IEEE International Conference in Cloud System and Big Data Engineering, pp. 463–466 (2016)Google Scholar
  29. 29.
    Dinh, T.N., Li, X., Thai, M.T.: Network clustering via maximizing modularity: IEEE international conference on approximation algorithms and theoretical limits. In: Data Mining, pp. 101–110 (2015)Google Scholar
  30. 30.
    Cafieri, S., Hansen, P., Liberti, L.: Improving heuristics for network modularity maximization using an exact algorithm. Discrete Appl. Math. 163, 65–72 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Chen, M., Konstantin, K., Boleslaw, K.: Community detection via maximization of modularity and its variants. IEEE Trans. Comput. Soc. Syst. 1(1), 46–65 (2014)CrossRefGoogle Scholar
  32. 32.
    Gaskó, N., Lung, R.I., Suciu, M.: Extremal optimization and network community structure. In: Bioinspired Optimization Methods and Their Applications (2016)Google Scholar
  33. 33.
    Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    The Open Video Project (OVP). (2016)
  35. 35.
    Massaoudi, M., Bahroun, S. Zagrouba, E.: Video summarization based on local features. In: International Conferences in Central Europe on Computer Graphics, Visualization and Computer Vision (2017)Google Scholar
  36. 36.
    Cirne, M.V.M., Pedrini, H.: VISCOM: a robust video summarization approach using color co-occurrence matrices. Multimed Tools Appl. 77(1), 857–875 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire LimTic, Institut Supérieur d’Informatique (ISI)Université Tunis ElmanarArianaTunisia

Personalised recommendations