Signal, Image and Video Processing

, Volume 12, Issue 7, pp 1395–1401 | Cite as

A new method for detecting texture defects based on modified local binary pattern

  • Mohammad Makaremi
  • Navid RazmjooyEmail author
  • Mehdi Ramezani
Original Paper


The modified local binary pattern is a method that can produce high-precision features for detection and diagnosis of texture images; in this paper, a method is proposed to detect the texture defects based on this algorithm. The proposed method includes two main phases. The first phase is based on clustering technique to fabric normal texture modeling, and the second phase is a threshold to decide about the fabric defects selection. The total dataset in this research contains 596 texture images from different databases including Isfahan textile dataset, UHK dataset, products and TILDA dataset. The fabric defects are generated because of pressure cracks and has effects, woof defects, warp defects and spool slacking. Finally, a noticeable detection rate about 91.86% with a higher rate of 92.02% sensitivity is achieved for the total given dataset. All of the reported results from tests are achieved by applying the proposed method on the explained dataset.


Fabric defect detection Texture recognition Fabric dataset Modal local binary pattern 


  1. 1.
    Salem, Y.B., Nasri, S.: Automatic recognition of woven fabrics based on texture and using SVM. Signal Image Video Process. 4(4), 429–34 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Roberts, W., et al.: PC based real-time defect imaging system for high-speed web inspection. Proceedings of SPIE 1907, 164–176 (1993)CrossRefGoogle Scholar
  3. 3.
    Zhao, Y.J., Yan, Y.H., Song, K.C.: Vision-based automatic detection of steel surface defects in the cold rolling process: considering the influence of industrial liquids and surface textures. Int. J. Adv. Manuf. Technol. 90(5–8), 1665–1678 (2017)CrossRefGoogle Scholar
  4. 4.
    Fateh, M., Kabir, E.: Color reduction in hand-drawn Persian carpet cartoons before discretization using image segmentation and finding edgy regions. J. AI Data Min. 6(1), 47–58 (2018)Google Scholar
  5. 5.
    Moallem, P., Razmjooy, N.: A multilayer perceptron neural network trained by invasive weed optimization for potato color image segmentation. Trends Appl. Sci. Res. 7(6), 445 (2012)CrossRefGoogle Scholar
  6. 6.
    Moallem, P., Razmjooy, N., Ashourian, M.: Computer vision-based potato defect detection using neural networks and support vector machine. Int. J. Robot. Autom. 28(2), 137–145 (2013)Google Scholar
  7. 7.
    Moallem, P., Razmjooy, N., Mousavi, B.S.: Robust potato color image segmentation using adaptive fuzzy inference system. Iran. J. Fuzzy Syst. 11(6), 47–65 (2014)MathSciNetGoogle Scholar
  8. 8.
    KumarA, Pang G.: Fabric defect segmentation using multi-channel blob detectors. Opt. Eng. 39(12), 3176–3190 (2000)CrossRefGoogle Scholar
  9. 9.
    Hornik, K.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Razmjooy, N., Mousavi, B.S., Khalilpour, M., Hosseini, H.: Automatic selection and fusion of color spaces for image thresholding. Signal Image Video Process. 8(4), 603–614 (2014)CrossRefGoogle Scholar
  11. 11.
    Razmjooy, N., Mousavi, B.S., Sargolzaei, P., Soleymani, F.: Image thresholding based on evolutionary algorithms. Int. J. Phys. Sci. 6(31), 7203–7211 (2011)Google Scholar
  12. 12.
    Latif-Amet, A., et al.: An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image Vis. Comput. 18, 543–553 (2000)CrossRefGoogle Scholar
  13. 13.
    Boroujeni, H.S., Charkari, N.M.: Robust moving shadow detection with hierarchical mixture of MLP experts. Signal Image Video Process. 8(7), 1291–305 (2014)CrossRefGoogle Scholar
  14. 14.
    Kuo, Chung-Yang Shih, Lee, Jiunn-Yih: Automatic recognition of fabric weave patterns by a fuzzy C-means clustering method. Text. Res. J. 74(2), 107–111 (2004)CrossRefGoogle Scholar
  15. 15.
    Bu, H.-G., et al.: Fabric defect detection based on multiple fractal features and support vector data description. Eng. Appl. Artif. Intell. 22(2), 224–235 (2009)CrossRefGoogle Scholar
  16. 16.
    Chan, C.H., Pang, G.K.H.: Fabric defect detection by Fourier analysis. IEEE Trans. Ind. Appl. 36(5), 1267–1276 (2000)CrossRefGoogle Scholar
  17. 17.
    Jeffrey Kuo, C.F., Shih, C.Y., Huang, C.C., Wen, Y.M.: Image inspection of knitted fabric defects using wavelet packets. Text. Res. J. 86(5), 553–560 (2016)CrossRefGoogle Scholar
  18. 18.
    Kumar, A., Pang, G.K.H.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 38(2), 425–440 (2002)CrossRefGoogle Scholar
  19. 19.
    Meylani, R., et al.: Texture defect detection using the adaptive two-dimensional lattice filter. Proc. IEEE Intl. Conf. Image Process. 3, 165–168 (1996)CrossRefGoogle Scholar
  20. 20.
    Hajimowlana, S.H. et al.: 1D Autoregressive modeling for defect detection in web inspection systems. In: Proceedings of IEEE MWSCAS, pp. 318–321 (1998)Google Scholar
  21. 21.
    Ozdemir, S., Ercil, A.: Markov random fields and Karhunen–Loeve transform for defect inspection of textile products. Proc. IEEE Conf. Emerg. Technol. Fact. Autom. 2, 697–703 (1996)Google Scholar
  22. 22.
    Kuo, C.-F.J., Lee, C.: A back-propagation neural network for recognizing fabric defects. Text. Res. J. 73(2), 147–151 (2003)CrossRefGoogle Scholar
  23. 23.
    Bennamoun, M., Bodnarova, A.: Automatic visual inspection and flaw detection in textile materials: past, present, and future. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol 5, IEEE, pp. 4340–4343 (1998)Google Scholar
  24. 24.
    Liu, Y., Zeng, L., Huang, Y.: An efficient HOG-ALBP feature for pedestrian detection. Signal Image Video Process. 8(1), 125–134 (2014)CrossRefGoogle Scholar
  25. 25.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    Textile college.
  27. 27.
    The University of Hong Kong, Scholar Hub.
  28. 28.
  29. 29.
  30. 30.
    Razmjooy, N., Mousavi, B.S., Soleymani, F.: A real-time mathematical computer method for potato inspection using machine vision. Comput. Math. Appl. 63(1), 268–279 (2012)CrossRefzbMATHGoogle Scholar
  31. 31.
    Razmjooy, N., Ramezani, M.: Training wavelet neural networks using hybrid particle swarm optimization and gravitational search algorithm for system identification. Int. J. Mechatron. Electron. Comput. Technol. 6(21), 2987–2997 (2016)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite ClubIslamic Azad University, Majlesi BranchIsfahanIran
  2. 2.Department of Electrical EngineeringUniversity of TafreshTafreshIran
  3. 3.Department of MathematicsUniversity of TafreshTafreshIran

Personalised recommendations