Advertisement

Signal, Image and Video Processing

, Volume 12, Issue 7, pp 1353–1360 | Cite as

Unsupervised face recognition in the wild using high-dimensional features under super-resolution and 3D alignment effect

  • Ahmed ElSayed
  • Elif Kongar
  • Ausif Mahmood
  • Tarek Sobh
Original Paper
  • 126 Downloads

Abstract

Face recognition algorithms customarily utilize query faces captured from uncontrolled, in the wild, environments. The quality of these facial images is affected by various internal factors, including the quality of sensors used in outdoor cameras as well as external ones, such as the quality and direction of light. These factors adversely affect the overall quality of the captured images often causing blurring and/or low resolution, a phenomena commonly referred to as image degradation. Super-resolution algorithms are highly effective in improving the resolution of degraded images, more so if the captured face is small requiring scaling up. With this motivation, this research aims at demonstrating the effect of one of the state-of-the-art image super-resolution algorithms on the labeled faces in the wild (lfw) dataset. In this regard, several cases are analyzed to demonstrate the effectiveness of the super-resolution algorithm. Each case is then investigated independently comparing the order of execution before or after the 3D face alignment step. Following this, resulting images are tested on a closed set face recognition protocol using unsupervised algorithms with high-dimensional extracted features. The inclusion of super-resolution resulted in improvement in the recognition rate compared to unsupervised algorithm results reported in the literature.

Keywords

Super-resolution High-dimensional features Unsupervised learning Face recognition Label faces in the wild (lfw) 

References

  1. 1.
    Abualkibash, M., ElSayed, A., Mahmood, A.: Highly scalable, parallel and distributed adaboost algorithm using light weight threads and web services on a network of multi-core machines. CoRR arXiv:1306.1467 (2013)
  2. 2.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006).  https://doi.org/10.1109/TPAMI.2006.244 CrossRefzbMATHGoogle Scholar
  3. 3.
    Banerjee, P.K., Datta, A.K.: Band-pass correlation filter for illumination- and noise-tolerant face recognition. Signal Image Video Processing. 11(1), 9–16 (2017).  https://doi.org/10.1007/s11760-016-0882-9 CrossRefGoogle Scholar
  4. 4.
    Beham, M.P., Roomi, S.M.M.: Anti-spoofing enabled face recognition based on aggregated local weighted gradient orientation. Signal Image Video Processing. (2017).  https://doi.org/10.1007/s11760-017-1189-1
  5. 5.
    Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’13, pp. 3025–3032. IEEE Computer Society, Washington, DC, USA (2013).  https://doi.org/10.1109/CVPR.2013.389
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005).  https://doi.org/10.1109/CVPR.2005.177
  7. 7.
    Ding, C., Bao, T., Karmoshi, S., Zhu, M.: Single sample per person face recognition with kpcanet and a weighted voting scheme. Signal Image Video Processing. 11(7), 1213–1220 (2017).  https://doi.org/10.1007/s11760-017-1077-8 CrossRefGoogle Scholar
  8. 8.
    Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016).  https://doi.org/10.1109/TPAMI.2015.2439281 CrossRefGoogle Scholar
  9. 9.
    Dreuw, P., Steingrube, P., Hanselmann, H., Ney, H.: Surf-face: face recognition under viewpoint consistency constraints. In: Proceedings of BMVC, pp. 7.1–7.11 (2009).  https://doi.org/10.5244/C.23.7
  10. 10.
    ElSayed, A., Mahmood, A., Sobh, T.: Unsupervised Sub-graph Selection and Its Application in Face Recognition Techniques, pp. 247–256. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20801-5_27 Google Scholar
  11. 11.
    ElSayed, A., Mahmood, A., Sobh, T.M.: Effect of super resolution on high dimensional features for unsupervised face recognition in the wild. CoRR arXiv:1704.01464 (2017)
  12. 12.
    Fookes, C., Lin, F., Chandran, V., Sridharan, S.: Evaluation of image resolution and super-resolution on face recognition performance. J. Vis. Commun. Image Represent. 23(1), 75–93 (2012).  https://doi.org/10.1016/j.jvcir.2011.06.004 CrossRefGoogle Scholar
  13. 13.
    Geng, C., Jiang, X.: Face recognition using sift features. In: Proceedings of the 16th IEEE International Conference on Image Processing, ICIP’09, pp. 3277–3280. IEEE Press, Piscataway, NJ, USA (2009)Google Scholar
  14. 14.
    Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  15. 15.
    Hu, S., Maschal, R., Young, S.S., Hong, T.H., Phillips, P.J.: Face recognition performance with superresolution. Appl. Opt. 51(18), 4250–4259 (2012).  https://doi.org/10.1364/AO.51.004250 CrossRefGoogle Scholar
  16. 16.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)Google Scholar
  17. 17.
    Jin, W., Gong, F., Zeng, X., Fu, R.: Illumination robust face recognition using random projection and sparse representation. Signal Image Video Processing. (2017).  https://doi.org/10.1007/s11760-017-1213-5
  18. 18.
    Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14, pp. 1867–1874. IEEE Computer Society, Washington, DC, USA (2014).  https://doi.org/10.1109/CVPR.2014.241
  19. 19.
    Kong, Y., Zhang, S., Cheng, P.: Super-resolution reconstruction face recognition based on multi-level FFD registration. Optik Int. J. Light Electron Opt. 124(24), 6926–6931 (2013).  https://doi.org/10.1016/j.ijleo.2013.05.175 CrossRefGoogle Scholar
  20. 20.
    Learned-Miller, G.B.H.E.: Labeled faces in the wild: Updates and new reporting procedures. Technical Report of UM-CS-2014-003, University of Massachusetts, Amherst (2014)Google Scholar
  21. 21.
    Liao, S., Lei, Z., Yi, D., Li, S.Z.: A benchmark study of large-scale unconstrained face recognition. In: IEEE International Joint Conference on Biometrics, pp. 1–8 (2014).  https://doi.org/10.1109/BTAS.2014.6996301
  22. 22.
    Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Super-Resolved Faces for Improved Face Recognition from Surveillance Video, pp. 1–10. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-74549-5_1
  23. 23.
    Rasti, P., Uiboupin, T., Escalera, S., Anbarjafari, G.: Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring, pp. 175–184. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41778-3_18 Google Scholar
  24. 24.
    Tang, Z., Wu, X., Leng, X., Chen, W.: A fast face recognition method based on fractal coding. Signal Image Video Processing. 11(7), 1221–1228 (2017).  https://doi.org/10.1007/s11760-017-1078-7 CrossRefGoogle Scholar
  25. 25.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-511–I-518 (2001).  https://doi.org/10.1109/CVPR.2001.990517
  26. 26.
    Wheeler, F.W., Liu, X., Tu, P.H.: Multi-frame super-resolution for face recognition. In: 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6 (2007).  https://doi.org/10.1109/BTAS.2007.4401949
  27. 27.
    Zhang, L., Chen, J., Lu, Y., Wang, P.: Face recognition using scale invariant feature transform and support vector machine. In: The 9th International Conference for Young Computer Scientists, 2008. ICYCS 2008, pp. 1766–1770 (2008)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.BridgeportUSA

Personalised recommendations