Skip to main content
Log in

Improved object tracking via joint color-LPQ texture histogram based mean shift algorithm

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a new robust mean shift tracker is proposed by utilizing the joint color and texture histogram. The contribution of our work is to take local phase quantization (LPQ) operator advantage of texture features representation, and to combine it with a color histogram mean shift tracking algorithm. The LPQ technique can be applied to obtain the texture features which represent the object. In texture classification, The LPQ operator is much robust to blur than the well-known local binary pattern operator (LBP). Compared with traditional color histogram mean shift algorithm which considers only color statistical information of the object, the joint color-LPQ texture histogram is more robust and overcome some difficulties of the traditional color histogram mean shift algorithm. Comparative experimental results on numerous challenging image sequences show that the proposed algorithm obtains considerably better performance than several state-of-the-art methods, especially traditional mean shift tracker. The algorithm is evaluated by numerical parameters: the center location and the average overlap, it proved the tracking robustness in presence of similar target appearance and background, motion blurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv.: CSUR 38(4), 1–45 (2006)

  2. Comaniciu, D., Ramesh, V., Meer, P.: Kernel based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 564–577 (2003)

    Article  Google Scholar 

  3. Zhao, Q., Yao, W., Xie, J.: Research on object tracking with occlusion. WIT Trans. Inf. Commun. Technol. 51, 537–545 (2014)

    Article  Google Scholar 

  4. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74, 3823–3831 (2011)

    Article  Google Scholar 

  5. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4(4), 1–58 (2013)

    Article  Google Scholar 

  6. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  7. Zhang, S., Yao, H., Zhou, H., Sun, X., Liu, S.: Robust visual tracking based on online learning sparse representation. Neurocomputing 100, 31–40 (2013)

    Article  Google Scholar 

  8. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: IEEE 12th International Conference on Computer Vision, pp. 1436–1443 (2009)

  9. Kwon, J., Lee, K.M.: Visual tracking decomposition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010, 1269–1276 (2010)

    Google Scholar 

  10. Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: IEEE International Conference on Computer Vision (ICCV), pp. 263–270 (2011)

  11. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  12. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  13. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern. Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  14. Ma, C., Yang, X., Zhang, C., Yang, M-H.: Long-term correlation tracking. In: CVPR (2015)

  15. Lan, X.Y., Yuen, P.C., Challappa, R.: Robust MIL-based feature template learning for object tracking. In: The Thirty First AAAI Conferences on Artificial Intelligence (AAAI), pp 4118–4125 (2017)

  16. Lan, X.Y., Ma, A.J., Yuen, P.C., Challappa, R.: Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans. Image Process. 24(12), 5826–5841 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust object tracking using joint color-texture histogram. Int. J. Pattern Recognit. Artif. Intell. 23(07), 1245–1263 (2009)

    Article  Google Scholar 

  18. Wang, Q., Fang, J., Yuan, Y.: Multi-cue based tracking. Neurocomputing 131, 227–236 (2014)

    Article  Google Scholar 

  19. Lan, X.Y., Ma, A. J., Yuen, P.C.: Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In: CVPR, pp 1194–1201 (2014)

  20. Dou, J., Li, J.: Robust visual tracking based on joint multi-feature histogram by integrating particle filter and mean shift. Optik Int. J. Light Electron Opt. 126, 1449–1456 (2015)

    Article  Google Scholar 

  21. Lan, X.Y., Zhang, S., Yuen, P.C.: Robust joint discriminative feature learning for visual tracking. In: IJCAI, pp. 3403–3410 (2016)

  22. Yuan, Y., Xiong, Z., Wang, Q.: An incremental framework for video-based traffic sign detection, tracking, and recognition. IEEE Trans. Intell. Transp. Syst. 18(7), 1918–1929 (2017)

    Article  Google Scholar 

  23. Chen, X., Zhang, M., Ruan, K., Xu, G., Sun, S., Gong, C., Min, J., Lei, B.: Improved mean shift target tracking based on self-organizing maps. SIViP 8, S103–S112 (2014)

    Article  Google Scholar 

  24. Wen, Z., Cai, Z.: A robust object tracking approach using mean shift. Proceedings of the Third International Conference on Natural Computation (ICNC) 2, 170–174 (2007)

    Article  Google Scholar 

  25. An, K.H., Chung, M.J.: Mean shift based object tracking with new feature representation. In: Proceedings of the Third International Conference on Ubiquitous Robots and Ambient Intelligence, pp 365–370 (2006)

  26. Xiaorong, P., Zhihu, Z.: A more robust mean shift tracker on joint color-CLTP histogram. Int. J. Image Gr. Signal. Process. 4(12), 34–42 (2012)

    Article  Google Scholar 

  27. Phadke, G., Velmurugan, R.: Mean LBP and modified fuzzy C-means weighted hybrid feature for illumination invariant mean-shift tracking. SIViP 11(4), 665–672 (2017)

    Article  Google Scholar 

  28. Tavakoli, R.H., Moin, M.S., Heikkila, J.: Local similarity number and its application to object tracking. Int. J. Adv. Robot. Syst. 10, 184 (2013)

    Article  Google Scholar 

  29. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  30. Ojansivu, V., Heikkila, J.: Blur insensitive texture classification using local phase quantization. In: Proceedings of Image and Signal Processing ICISP 2008, Cherbourg-Octeville, pp. 236–243 (2008)

  31. Heikkila, J., Ojansivu, V.: Methods for local phase quantization in blur-insensitive image analysis. In: Proceedings of International Workshop Local and Non-Local Approximation in Image Processing, pp. 104–111 (2009)

  32. Wu, Y., Lim, J., Yang, M. H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418 (2013)

  33. Qiao, L., Xiao, M., Weihua, O., Quan, Z.: Visual object tracking with online sample selection via lasso regularization. SIViP 11(5), 881–888 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadia Medouakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medouakh, S., Boumehraz, M. & Terki, N. Improved object tracking via joint color-LPQ texture histogram based mean shift algorithm. SIViP 12, 583–590 (2018). https://doi.org/10.1007/s11760-017-1196-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1196-2

Keywords

Navigation