Skip to main content

Modulation of sensorimotor rhythms for brain-computer interface using motor imagery with online feedback


This research studies the impact of the imagination of movements and associated feedbacks on the modulation of sensorimotor electroencephalographic (EEG) rhythms, for the online controls of a brain-computer interface (BCI). Nine subjects with no physical or mental impairments were selected. The number of sessions was five: one calibration and four feedback sessions. A computer screen’s cursor movement was controlled in one dimension using EEG-based four-class BCI involving motor imagery tasks of moving the right hand, the left hand, both hands, or both feet. Our findings reveal that the visual feedback applied during motor imagery movement modulates sensorimotor EEG rhythms clearly in the mu and beta bands. The analyses of event-related desynchronization/synchronization (ERD/ERS) suggest significant differences between brain activities in the calibration and feedback sessions; large ERDs during the online feedback sessions compared to that in the calibration session have been observed. The increasing ERDs in the online feedback session were noticed over the mu1 (8–10 Hz) and upper beta (18–24 Hz) rhythms, resulting in the cursor control success rate at 73.3%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Gert Pfurtscheller, C.N.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68 (1997)

    Article  Google Scholar 

  2. Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol. 120, 239–247 (2009)

    Article  Google Scholar 

  3. Jeon, Y., Nam, C.S., Kim, Y.-J., Whang, M.C.: Event-related (de)synchronization (ERD/ERS) during motor imagery tasks: implications for brain-computer interfaces. Int. J. Ind. Ergon. 41, 428–436 (2011)

    Article  Google Scholar 

  4. Galán, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., et al.: A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 119, 2159–2169 (2008)

    Article  Google Scholar 

  5. Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153–159 (2006)

    Article  Google Scholar 

  6. Yacine, B., Amal, F., Walter, B.: Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography. J. Neural Eng. 11, 035014 (2014)

    Article  Google Scholar 

  7. Rafal Kus, D.V., Zygierewicz, J., Malechka, T., Graeser, A., Member, IEEE, Durka, P.: Asynchronous BCI based on motor imagerywith automated calibration and neurofeedback training. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 823–835 (2012)

  8. Pfurtscheller, C.N.G., Flotzinger, D., Pregenzer, M.: EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 103, 642–651 (1997)

    Article  Google Scholar 

  9. Morash, V., Bai, O., Furlani, S., Lin, P., Hallett, M.: Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin. Neurophysiol. 119, 2570–8 (2008)

    Article  Google Scholar 

  10. Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.-R., Kunzmann, V., Losch, F., et al.: The Berlin brain-computer interface: EEG-based communication without subject training. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 147–152 (2006)

    Article  Google Scholar 

  11. Ruffini, G., Dunne, S., Fuentemilla, L., Grau, C., Farrés, E., Marco-Pallarés, J., et al.: First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sens. Actuators A Phys. 144, 275–279 (2008)

    Article  Google Scholar 

  12. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)

    Article  Google Scholar 

  13. McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103, 386–394 (1997)

    Article  Google Scholar 

  14. McFarland, D.J., Krusienski, D.J., Sarnacki, W.A., Wolpaw, J.R.: Emulation of computer mouse control with a noninvasive brain-computer interface. J. Neural Eng. 5, 101–10 (2008)

    Article  Google Scholar 

  15. Pfurtscheller, F.H.L.S.G.: Event-related EEG/MEG synchronization and desynchronization: basic principle. Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  16. LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10, 046003 (2013)

    Article  Google Scholar 

Download references


We would like to thank Universiti Teknologi PETRONAS for the Graduate Assistantship Scheme, Centre for Intelligent Signal and Imaging Research (CISIR) for the facilities and equipment provided, and participants for their cooperations in the experiments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohd Zuki Yusoff.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdalsalam, E., Yusoff, M.Z., Malik, A. et al. Modulation of sensorimotor rhythms for brain-computer interface using motor imagery with online feedback. SIViP 12, 557–564 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Brain-computer interface (BCI)
  • EEG
  • Sensorimotor rhythm (SMR)
  • Motor imagery
  • Event-related desynchronization/synchronization (ERD/ERS)