Signal, Image and Video Processing

, Volume 12, Issue 3, pp 557–564 | Cite as

Modulation of sensorimotor rhythms for brain-computer interface using motor imagery with online feedback

  • Eltaf Abdalsalam
  • Mohd Zuki YusoffEmail author
  • Aamir Malik
  • Nidal S. Kamel
  • Dalia Mahmoud
Original Paper


This research studies the impact of the imagination of movements and associated feedbacks on the modulation of sensorimotor electroencephalographic (EEG) rhythms, for the online controls of a brain-computer interface (BCI). Nine subjects with no physical or mental impairments were selected. The number of sessions was five: one calibration and four feedback sessions. A computer screen’s cursor movement was controlled in one dimension using EEG-based four-class BCI involving motor imagery tasks of moving the right hand, the left hand, both hands, or both feet. Our findings reveal that the visual feedback applied during motor imagery movement modulates sensorimotor EEG rhythms clearly in the mu and beta bands. The analyses of event-related desynchronization/synchronization (ERD/ERS) suggest significant differences between brain activities in the calibration and feedback sessions; large ERDs during the online feedback sessions compared to that in the calibration session have been observed. The increasing ERDs in the online feedback session were noticed over the mu1 (8–10 Hz) and upper beta (18–24 Hz) rhythms, resulting in the cursor control success rate at 73.3%.


Brain-computer interface (BCI) EEG Sensorimotor rhythm (SMR) Motor imagery Event-related desynchronization/synchronization (ERD/ERS) 



We would like to thank Universiti Teknologi PETRONAS for the Graduate Assistantship Scheme, Centre for Intelligent Signal and Imaging Research (CISIR) for the facilities and equipment provided, and participants for their cooperations in the experiments.


  1. 1.
    Gert Pfurtscheller, C.N.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68 (1997)CrossRefGoogle Scholar
  2. 2.
    Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol. 120, 239–247 (2009)CrossRefGoogle Scholar
  3. 3.
    Jeon, Y., Nam, C.S., Kim, Y.-J., Whang, M.C.: Event-related (de)synchronization (ERD/ERS) during motor imagery tasks: implications for brain-computer interfaces. Int. J. Ind. Ergon. 41, 428–436 (2011)CrossRefGoogle Scholar
  4. 4.
    Galán, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., et al.: A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 119, 2159–2169 (2008)CrossRefGoogle Scholar
  5. 5.
    Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153–159 (2006)CrossRefGoogle Scholar
  6. 6.
    Yacine, B., Amal, F., Walter, B.: Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography. J. Neural Eng. 11, 035014 (2014)CrossRefGoogle Scholar
  7. 7.
    Rafal Kus, D.V., Zygierewicz, J., Malechka, T., Graeser, A., Member, IEEE, Durka, P.: Asynchronous BCI based on motor imagerywith automated calibration and neurofeedback training. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 823–835 (2012)Google Scholar
  8. 8.
    Pfurtscheller, C.N.G., Flotzinger, D., Pregenzer, M.: EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 103, 642–651 (1997)CrossRefGoogle Scholar
  9. 9.
    Morash, V., Bai, O., Furlani, S., Lin, P., Hallett, M.: Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin. Neurophysiol. 119, 2570–8 (2008)CrossRefGoogle Scholar
  10. 10.
    Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.-R., Kunzmann, V., Losch, F., et al.: The Berlin brain-computer interface: EEG-based communication without subject training. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 147–152 (2006)CrossRefGoogle Scholar
  11. 11.
    Ruffini, G., Dunne, S., Fuentemilla, L., Grau, C., Farrés, E., Marco-Pallarés, J., et al.: First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sens. Actuators A Phys. 144, 275–279 (2008)CrossRefGoogle Scholar
  12. 12.
    Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)CrossRefGoogle Scholar
  13. 13.
    McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103, 386–394 (1997)CrossRefGoogle Scholar
  14. 14.
    McFarland, D.J., Krusienski, D.J., Sarnacki, W.A., Wolpaw, J.R.: Emulation of computer mouse control with a noninvasive brain-computer interface. J. Neural Eng. 5, 101–10 (2008)CrossRefGoogle Scholar
  15. 15.
    Pfurtscheller, F.H.L.S.G.: Event-related EEG/MEG synchronization and desynchronization: basic principle. Clin. Neurophysiol. 110, 1842–1857 (1999)CrossRefGoogle Scholar
  16. 16.
    LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10, 046003 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Eltaf Abdalsalam
    • 1
  • Mohd Zuki Yusoff
    • 1
    Email author
  • Aamir Malik
    • 1
  • Nidal S. Kamel
    • 1
  • Dalia Mahmoud
    • 2
  1. 1.Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic EngineeringUniversiti Teknologi PETRONAS (UTP)Seri IskandarMalaysia
  2. 2.Al-Neelain University, Department of Electronic EngineeringKhartoumSudan

Personalised recommendations