Skip to main content
Log in

Coupled dictionary learning in wavelet domain for Single-Image Super-Resolution

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper a coupled dictionary learning mechanism with mapping function is proposed in the wavelet domain for the task of Single-Image Super-Resolution. Sparsity is used as the invariant feature for achieving super-resolution. Instead of using a single dictionary multiple compact dictionaries are proposed in the wavelet domain. Such dictionaries will exhibit the properties of the wavelet transform such as compactness, directionality and redundancy. Six pairs of dictionaries are designed using a coupled dictionary mechanism with mapping function which helps in strengthening the similarity between the sparse coefficients. Low-resolution image is assumed as the approximation image of the first-level wavelet decomposition. High resolution is achieved by estimating the wavelet sub-bands of this low-resolution image by dictionary learning and sparsity. The proposed algorithm outperforms a well-known spatial domain and wavelet domain algorithm as evaluated on the existing comparative parameters such as structural similarity index measure and peak signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2009)

    Article  Google Scholar 

  2. Lin, Z., Shum, H.Y.: Fundamental limits of reconstruction-based super-resolution algorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 83–97 (2004)

    Article  Google Scholar 

  3. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(8), 3467–3478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yeganli, F., Nazzal, M., Ozkaramanli, H.: Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness and gradient phase angle. SIVP J. 9(1), 285–293 (2015)

    Google Scholar 

  6. Yeganli, F., Nazzal, M., Unal, M., Ozkaramanli, H.: Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness. SIVP J. 10(3), 535–542 (2016)

    Google Scholar 

  7. Ahmed, J., Shah, M.A.: Single image super-resolution by directionally structured coupled dictionary learning. EURASIP JIVP 2016(1), 36 (2016)

    MathSciNet  Google Scholar 

  8. Ahmed, J., Klette, R.: Coupled multiple dictionary learning based on edge sharpness for single image super-resolution. In: Proceedings of IEEE International Conference Pattern Recognition (ICPR), pp. 3838–3843 (2016)

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In Proceedings of European Conference Computer Vision (ECCV), pp. 184–199 (2014)

  10. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp. 370–378 (2015)

  11. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of IEEE Computer Vision Pattern Recognition (CVPR), pp. 1646–1654 (2016)

  12. Ophir, B., Lustig, M., Elad, M.: Multi-scale dictionary learning using wavelets. IEEE J. Sel. Top. Signal Process. 20(5), 1014–1024 (2011)

    Article  Google Scholar 

  13. Mallat, S., Zhong, S.: Characterization of signals from multi-scale edges. IEEE Trans. Pattern Anal. Mach. Intell. 7, 710–732 (1992)

    Article  Google Scholar 

  14. Mallat, S., Hwang, W.L.: Singularity detection and processig with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)

    Article  MATH  Google Scholar 

  15. Nazzal, M., Ozkaramanli, H.: Wavelet domain dictionary learning based single image super-resolution. SIVP J. 9, 1–11 (2014)

    Google Scholar 

  16. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.D.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  17. Franzen, R.: Kodak lossless true color image suite. http://r0k.us/graphics/kodak/index.html (2016). Accessed 20 Jan 2016

  18. Elad, M., Yavneh, I.: A plurality of sparse representations is better than the sparsest one alone. IEEE Trans. Inf. Theory 55(10), 4701–4714 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, W., Zhang, L., Shi, G., Wu, X.: Image de-blurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Aharon, M., Elad, M., Bruckstein, A.D.: The K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311 (2006)

    Article  MATH  Google Scholar 

  21. Wang, S., Zhang, L., Liang, Y., Pan, Q.: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In: Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2216–2223 (2012)

  22. Kingsbury, N.G.: The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement. In: Proceedings of European Signal Processing Conference (EUSIPCO), pp. 319–322 (1998)

  23. Yu, R., Ozkaramanli, H.: Hilbert transform pairs of biorthogonal wavelet bases. IEEE Trans. Signal Process. 54(6), 2119–2152 (2006)

  24. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Annual Asilomar Conference on Signal, Systems, and Computers, vol. 43, no. 1, pp. 40–44 (1993)

  25. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junaid Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J., Waqas, M., Ali, S. et al. Coupled dictionary learning in wavelet domain for Single-Image Super-Resolution. SIViP 12, 453–461 (2018). https://doi.org/10.1007/s11760-017-1178-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1178-4

Keywords

Navigation