Abstract
Enhancing facial images captured under different lighting conditions is an important challenge and a crucial component in the automatic face recognition systems. This work tackles illumination variation challenge by proposing a new face image enhancement approach based on Fuzzy theory. The proposed Fuzzy reasoning model generates an adaptive enhancement which corrects and improves non-uniform illumination and low contrasts. The FRM approach has been assessed using four blind-reference image quality metrics supported by visual assessment. A comparison to six state-of-the-art methods has also been provided. Experiments are performed on four public data sets, namely Extended Yale-B, Mobio, FERET and Carnegie Mellon University Pose, Illumination, and Expression, showing very interesting results achieved by our approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agaian, S., Roopaei, M., Shadaram, M., Bagalkot, S.S.: Bright and dark distance-based image decomposition and enhancement. In: 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, pp. 73–78 (2014). doi:10.1109/IST.2014.6958449
Agaian, S.S., Panetta, K., Grigoryan, A.M.: A new measure of image enhancement. In: IASTED International Conference on Signal Processing & Communication, pp. 19–22. Citeseer (2000)
Agaian, S.S., Panetta, K., Grigoryan, A.M.: Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Process. 10(3), 367–382 (2001). doi:10.1109/83.908502
Aouache, M., Hussain, A., Zulkifley, M.A., Wan Zaki, D.W.M., Husain, H., Abdul Hamid, H.B.: Anterior osteoporosis classification in cervical vertebrae using fuzzy decision tree. Multimed Tools Appl, 1–35 (2017). doi:10.1007/s11042-017-4468-5
Aouache, M., Oulefki, A., Bengherabi, M., Boutellaa, E., Almahdi Algaet, M.: Towards nonuniform illumination face enhancement via adaptive contrast stretching. Multimed Tools Appl, 1–39 (2017). doi:10.1007/s11042-017-4665-2
Arriaga-Garcia, E.F., Sanchez-Yanez, R.E., Garcia-Hernandez, M.G.: Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In: 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP), pp. 28–34 (2014). doi:10.1109/CONIELECOMP.2014.6808563
Asmare, M.H., Asirvadam, V.S., Hani, A.F.M.: Image enhancement based on contourlet transform. Signal Image Video Process. 9(7), 1679–1690 (2015). doi:10.1007/s11760-014-0626-7
Banerjee, P.K., Datta, A.K.: Band-pass correlation filter for illumination- and noise-tolerant face recognition. Signal Image Video Process. 11(1), 9–16 (2017). doi:10.1007/s11760-016-0882-9
Best-Rowden, L., Jain, A.K.: Automatic face image quality prediction. CoRR. arxiv:1706.09887
Chang, S.J., Li, S., Andreasen, A., Sha, X.Z., Zhai, X.Y.: A reference-free method for brightness compensation and contrast enhancement of micrographs of serial sections. PloS ONE 10(5), e0127855 (2015)
Du, S., Ward, R.: Wavelet-based illumination normalization for face recognition. In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II-954–II-957 (2005). doi:10.1109/ICIP.2005.1530215
Eramian, M., Mould, D.: Histogram equalization using neighborhood metrics. In: The 2nd Canadian Conference on Computer and Robot Vision (CRV’05), pp. 397–404. IEEE (2005)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)
Hasikin, K., Mat Isa, N.A.: Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images. Signal Image Video Process. 8(8), 1591–1603 (2014). doi:10.1007/s11760-012-0398-x
Hasikin, K., Mat Isa, N.A.: Adaptive fuzzy intensity measure enhancement technique for non-uniform illumination and low-contrast images. Signal Image Video Process. 9(6), 1419–1442 (2015). doi:10.1007/s11760-013-0596-1
Kryszczuk, K., Drygajlo, A.: On face image quality measures. In: Proceedings of the 2nd Workshop on Multimodal User Authentication (2006)
Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)
Lim, S.H., Mat Isa, N.A., Ooi, C.H., Toh, K.K.V.: A new histogram equalization method for digital image enhancement and brightness preservation. Signal Image Video Process. 9(3), 675–689 (2015). doi:10.1007/s11760-013-0500-z
McCool, C., Marcel, S., Hadid, A., Pietikainen, M., Matejka, P., Cernocky, J., Poh, N., Kittler, J., Larcher, A., Levy, C., Matrouf, D., Bonastre, J.F., Tresadern, P., Cootes, T.: Bi-modal person recognition on a mobile phone: using mobile phone data. In: IEEE ICME Workshop on Hot Topics in Mobile Multimedia (2012)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The feret database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16, 295–306 (1998)
Pizer, S., Amburn, E., Austin, J., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Gr. Image Process. 39(3), 355–368 (1987)
Poddar, S., Tewary, S., Sharma, D., Karar, V., Ghosh, A., Pal, S.K.: Non-parametric modified histogram equalisation for contrast enhancement. IET Image Process. 7(7), 641–652 (2013). doi:10.1049/iet-ipr.2012.0507
Roopaei, M., Agaian, S., Shadaram, M., Hurtado, F.: Cross-entropy histogram equalization. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 158–163 (2014). doi:10.1109/SMC.2014.6973900
Sao, A.K., Yegnanarayana, B.: On the use of phase of the fourier transform for face recognition under variations in illumination. Signal Image Video Process. 4(3), 353–358 (2010). doi:10.1007/s11760-009-0125-4
Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010). doi:10.1109/TCE.2010.5681130
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (pie) database. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, FGR’02, pp. 53–58. IEEE Computer Society, Washington, DC, USA (2002)
Tizhoosh, H.R.: Fuzzy image enhancement: An overview. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing, pp. 137–171. Physica-Verlag HD, Heidelberg (2000). doi:10.1007/978-3-7908-1847-5
Yager, R.R., Zadeh, L.A.: Fuzzy Sets, Neural Networks and Soft Computing, 1st edn. Wiley, New York (1994)
Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC–3(1), 28–44 (1973). doi:10.1109/TSMC.1973.5408575
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003). doi:10.1145/954339.954342
Zhou, Y., Panetta, K., Agaian, S.: Human visual system based mammogram enhancement and analysis. In: 2010 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), pp. 229–234. IEEE (2010)
Acknowledgements
This research received funding from the Algerian Ministry of Higher Education and Scientific Research (AMHESR) via the National Research Fund project (AVVISA-FNR-2013-2016/003). The authors are with the Centre de Dévelopment des Technologies Avancées (CDTA).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Oulefki, A., Mustapha, A., Boutellaa, E. et al. Fuzzy reasoning model to improve face illumination invariance. SIViP 12, 421–428 (2018). https://doi.org/10.1007/s11760-017-1174-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-017-1174-8