Skip to main content
Log in

MCCT: a multi-channel complementary census transform for image classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Census transformation and its variants have gained popularity in image classification for their simplicity and better performance. To describe a texture pattern, these approaches generally use sign information while comparing neighboring pixels. However, our observation is that sign and magnitude in a single color channel as well as in different color channels hold complementary information where sign component captures texture in an image and the saliency of that texture can be captured by the magnitude component. Considering these issues, a multi-channel complementary census transform (MCCT) is proposed in this paper by combining all of these information to capture more discriminating features. Rigorous experiments on nine different datasets which belong to six different applications such as flower, gender, aerial orthoimagery, event, leaf, indoor and outdoor scene classification demonstrate that MCCT outperforms existing state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://cs.nju.edu.cn/_upload/tpl/00/ed/237/template237/publication.htm.

References

  1. Yu, W., Gan, L., Yang, S., Ding, Y., Jiang, P., Wang, J., Li, S.: An improved LBP algorithm for texture and face classification. Signal Image Video Process. 8(1), 155–161 (2014)

    Article  Google Scholar 

  2. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  3. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shoyaib, M., Abdullah-Al-Wadud, M., Chae, O.: A noise-aware coding scheme for texture classification. Sensors 11(8), 8028–8044 (2011)

    Article  Google Scholar 

  5. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: European Conference on Computer Vision—ECCV’94, pp. 151–158. Springer (1994)

  6. Rahman, M.M., Rahman, S., Rahman, R., Hossain, B.M., Shoyaib, M.: DTCTH: a discriminative local pattern descriptor for image classification. EURASIP J. Image Video Process. 2017(1), 30 (2017)

    Article  Google Scholar 

  7. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: International Conference on Computer Vision and Pattern Recognition, vol. 2., pp. 2169–2178. IEEE (2006)

  8. Xiao, Y., Wu, J., Yuan, J.: mCENTRIST: a multi-channel feature generation mechanism for scene categorization. IEEE Trans. Image Process. 23(2), 823–836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)

    Article  Google Scholar 

  10. Qi, X., Xiao, R., Li, C.G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)

    Article  Google Scholar 

  11. Huang, D., Zhu, C., Wang, Y., Chen, L.: HSOG: a novel local image descriptor based on histograms of the second-order gradients. IEEE Trans. Image Process. 23(11), 4680–4695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  13. van Gemert, J.C., Geusebroek, J.M., Veenman, C.J., Smeulders, A.W.: Kernel codebooks for scene categorization. In: European Conference on Computer Vision—ECCV 2008, pp. 696–709. Springer (2008)

  14. Yang, C., Ye, M., Tang, S., Xiang, T., Liu, Z.: Semi-supervised low-rank representation for image classification. Signal Image Video Process. 11(1), 73–80 (2017)

    Article  Google Scholar 

  15. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  16. Jun, B., Choi, I., Kim, D.: Local transform features and hybridization for accurate face and human detection. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1423–1436 (2013)

    Article  Google Scholar 

  17. Rahman, M.M., Rahman, S., Kamal, M., Dey, E.K., Abdullah-Al-Wadud, M., Shoyaib, M.: Noise adaptive binary pattern for face image analysis. In: International Conference On Computer and Information Technology. IEEE (2015)

  18. Ashir, A.M., Eleyan, A.: Facial expression recognition based on image pyramid and single-branch decision tree. Signal Image Video Process. 11(6), 1017–1024 (2017)

    Article  Google Scholar 

  19. Mlakar, U., Potočnik, B.: Automated facial expression recognition based on histograms of oriented gradient feature vector differences. Signal Image Video Process. 9(1), 245–253 (2015)

    Article  Google Scholar 

  20. Kaya, Y., Ertuğrul, Ö.F.: Gender classification from facial images using gray relational analysis with novel local binary pattern descriptors. Signal Image Video Process. 11(4), 769–776 (2017)

    Article  Google Scholar 

  21. Rahman, M.M., Rahman, S., Dey, E.K., Shoyaib, M.: A gender recognition approach with an embedded preprocessing. Int. J. Inf. Technol. Comput. Sci. 7(7), 19 (2015)

    Google Scholar 

  22. Takarli, F., Aghagolzadeh, A., Seyedarabi, H.: Combination of high-level features with low-level features for detection of pedestrian. Signal Image Video Process. 10(1), 93–101 (2016)

    Article  Google Scholar 

  23. Liu, Z.G., Yang, Y., Ji, X.H.: Flame detection algorithm based on a saliency detection technique and the uniform local binary pattern in the YCbCr color space. Signal Image Video Process. 10(2), 277–284 (2016)

    Article  Google Scholar 

  24. Collins, R.T., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., et al.: A System for Video Surveillance and Monitoring, vol. 2. Carnegie Mellon University, The Robotics Institute, Pittsburgh (2000)

    Google Scholar 

  25. Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)

    Article  MATH  Google Scholar 

  26. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  27. Rahman, S., Rahman, M.M., Abdullah-Al-Wadud, M., Al-Quaderi, G.D., Shoyaib, M.: An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 2016(1), 35 (2016)

    Article  Google Scholar 

  28. Dhawan, A.P.: Medical Image Analysis. Wiley, New Jersey (2011)

    Book  Google Scholar 

  29. Rahman, S., Rahman, M.M., Hussain, K., Khaled, S.M., Shoyaib, M.: Image enhancement in spatial domain: a comprehensive study. In: International Conference on Computer and Information Technology, pp. 368–373. IEEE (2014)

  30. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  31. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

  32. Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative local binary patterns for human detection in personal album. In: International Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

  33. Rivera, A.R., Castillo, J.R., Chae, O.: Local directional texture pattern image descriptor. Pattern Recognit. Lett. 51, 94–100 (2015)

    Article  Google Scholar 

  34. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Greiner, M., Regal, C., Stewart, J., Jin, D.: Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phys. Rev. Lett. 94(11), 110401 (2005)

    Article  Google Scholar 

  36. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: International Conference on Computer Vision and Pattern Recognition, pp. 413–420. IEEE (2009)

  37. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

  38. Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object recognition. In: International Conference on Computer Vision, pp. 1–8. IEEE (2007)

  39. Brown, M., Süsstrunk, S.: Multi-spectral sift for scene category recognition. In: International Conference on Computer Vision and Pattern Recognition, pp. 177–184. IEEE (2011)

  40. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: International Conference on Computer Vision and Pattern Recognition, pp. 3485–3492. IEEE (2010)

  41. Söderkvist, O.: Computer vision classification of leaves from Swedish trees. Master’s thesis, Linköping University (2001)

  42. Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: International Conference on Computer Vision and Pattern Recognition, pp. 1465–1472. IEEE (2011)

  43. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)

  44. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: International Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

  45. Ren, J., Jiang, X., Yuan, J., Wang, G.: Optimizing LBP structure for visual recognition using binary quadratic programming. IEEE Signal Process. Lett. 21(11), 1346–1350 (2014)

    Article  Google Scholar 

  46. Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: International Conference on Computer Vision, pp. 2486–2493. IEEE (2011)

  47. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: International Conference on Computer Vision and Pattern Recognition, pp. 3360–3367. IEEE (2010)

  48. Shabou, A., LeBorgne, H.: Locality-constrained and spatially regularized coding for scene categorization. In: International Conference on Computer Vision and Pattern Recognition, pp. 3618–3625. IEEE (2012)

  49. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: International Conference on Computer Vision and Pattern Recognition, pp. 1794–1801. IEEE (2009)

  50. Lin, D., Lu, C., Liao, R., Jia, J.: Learning important spatial pooling regions for scene classification. In: International Conference on Computer Vision and Pattern Recognition, pp. 3726–3733 (2014)

  51. Yuan, Y., Mou, L., Lu, X.: Scene recognition by manifold regularized deep learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2222–2233 (2015)

    Article  MathSciNet  Google Scholar 

  52. Zuo, Z., Wang, G., Shuai, B., Zhao, L., Yang, Q., Jiang, X.: Learning discriminative and shareable features for scene classification. In: European Conference on Computer Vision—ECCV 2014, pp. 552–568. Springer (2014)

  53. Li, Q., Wu, J., Tu, Z.: Harvesting mid-level visual concepts from large-scale internet images. In: International Conference on Computer Vision and Pattern Recognition, pp. 851–858 (2013)

  54. Xie, L., Tian, Q., Zhang, B.: Generalized regular spatial pooling for image classification. In: International Conference on Acoustics Speech and Signal Processing (2015)

  55. Chen, C., Zhou, L., Guo, J., Li, W., Su, H., Guo, F.: Gabor-filtering-based completed local binary patterns for land-use scene classification. In: International Conference on Multimedia Big Data, pp. 324–329. IEEE (2015)

  56. Chen, C., Zhang, B., Su, H., Li, W., Wang, L.: Land-use scene classification using multi-scale completed local binary patterns. Signal Image Video Process. 10(4), 745–752 (2016)

    Article  Google Scholar 

  57. Yuan, X.T., Liu, X., Yan, S.: Visual classification with multitask joint sparse representation. IEEE Trans. Image Process. 21(10), 4349–4360 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: an astounding baseline for recognition. In: International Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

  59. Wang, Z., Feng, J., Yan, S., Xi, H.: Linear distance coding for image classification. IEEE Trans. Image Process. 22(2), 537–548 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zuo, Z., Shuai, B., Wang, G., Liu, X., Wang, X., Wang, B., Chen, Y.: Convolutional recurrent neural networks: learning spatial dependencies for image representation. In: International Conference on Computer Vision and Pattern Recognition Workshops, pp. 18–26 (2015)

  61. Lu, X., Li, X., Mou, L.: Semi-supervised multitask learning for scene recognition. IEEE Trans. Cybern. 45(9), 1967–1976 (2015)

    Article  Google Scholar 

  62. Farahzadeh, E., Cham, T.J., Sluzek, A.: Scene recognition by semantic visual words. Signal Image Video Process. 9(8), 1935–1944 (2015)

  63. Borji, A., Itti, L.: Human vs. computer in scene and object recognition. In: International Conference on Computer Vision and Pattern Recognition, pp. 113–120. IEEE (2014)

  64. Oliveira, G.L., Nascimento, E.R., Vieira, A.W., Campos, M.F.: Sparse spatial coding: a novel approach for efficient and accurate object recognition. In: International Conference on Robotics and Automation, pp. 2592–2598. IEEE (2012)

  65. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  66. Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: International Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  67. Mansanet, J., Albiol, A., Paredes, R.: Local deep neural networks for gender recognition. Pattern Recognit. Lett. 70, 80–86 (2016)

    Article  Google Scholar 

  68. Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recognit. Lett. 33(4), 431–437 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by fellowship from ICT Division, Ministry of Posts, Telecommunications and Information Technology, Bangladesh (No—56.00.0000.028.33. 028.15-214 Date 24-06-2015), and Samsung R & D Institute, Bangladesh (201300DU001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mostafijur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Rahman, S. & Shoyaib, M. MCCT: a multi-channel complementary census transform for image classification. SIViP 12, 281–289 (2018). https://doi.org/10.1007/s11760-017-1156-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1156-x

Keywords

Navigation