Advertisement

Signal, Image and Video Processing

, Volume 12, Issue 2, pp 199–206 | Cite as

Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach

  • Lakhan Dev SharmaEmail author
  • Ramesh Kumar Sunkaria
Original Paper

Abstract

Early and accurate detection of myocardial infarction is imperative for reducing the mortality rate due to heart attack. Present work proposes a novel technique aiming toward accurate and timely detection of inferior myocardial infarction (IMI). Stationary wavelet transform has been used to decompose the segmented multilead electrocardiogram (ECG) signal into different sub-bands. Sample entropy, normalized sub-band energy, log energy entropy, and median slope calculated over selected bands of multilead ECG are used as features. Support vector machine (SVM) and K-nearest neighbor (KNN) have been used to classify between subjects admitted for health control (HC) and patients suffering from IMI, using attributes selected on the basis of gain ratio. The full length ECG of lead II, III, and aVF of all the subjects having IMI or admitted for HC from Physikalisch-Technische Bundesanstalt Database (PTB-DB) has been used in the present work. The proposed technique has been scrutinized under both “class-oriented,” and more practical, “subject-oriented” approach. Under the class-oriented approach, data have been divided into training and test data irrespective of the patients, whereas in subject-oriented approach, data from one patient have been used for test and training has been done on the rest of the subjects. Under the class-oriented approach, area under the receiver operating characteristic curve (Roc), sensitivity (Se%), specificity (Sp%), positive predictivity (+P%), and accuracy (Ac%) is Roc \(=\) 0.9945, Se% \(=\) 98.67, Sp% \(=\) 98.72, +P% \(=\) 98.79, Ac% \(=\) 98.69 using KNN and Roc \(=\) 0.9994, Se% \(=\) 99.35, Sp% \(=\) 98.29, +P% \(=\) 98.41, Ac% \(=\) 98.84 using SVM. For the subject-oriented approach, an average Ac% \(=\) 81.71, Se% \(=\) 79.01, Sp% \(=\) 79.26, and +P% \(=\) 80.25 has been achieved. This shows the potential of the proposed technique to work for an unknown subject, on which it has not been trained.

Keywords

Inferior myocardial infarction (IMI) Stationary wavelet transform (SWT) Feature extraction Feature selection K-nearest neighbors (KNN) Support vector machine (SVM) 

Notes

Acknowledgements

Authors are thankful to the Ministry of Human Resource Development, Government of India for providing the financial assistance. This work has been done at Medical Imaging and Computational Modeling of Physiological System Research Laboratory at Department of Electronics and Communication Engineering of Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

References

  1. 1.
    Mozaffarian, D., et al.: Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation 131(24), E29–E322 (2015)CrossRefGoogle Scholar
  2. 2.
    Reddy, K.S., Yusuf, S.: Emerging epidemic of cardiovascular disease in developing countries. Circulation 97(6), 596–601 (1998)CrossRefGoogle Scholar
  3. 3.
    W.H.O.: World health statistics 2015: part ii: global health indicators. Technical report, World Health Organisation (2015)Google Scholar
  4. 4.
  5. 5.
    Thygesen, K., Alpert, J.S., Jaffe, A.S., Simoons, M.L., Chaitman, B.R., White, H.D.: Third universal definition of myocardial infarction. Circulation 126(16), 2020–2035 (2012)CrossRefGoogle Scholar
  6. 6.
    Antman, E.M., et al.: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarctionexecutive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J. Am. Coll. Cardiol. 44(3), 671–719 (2004)CrossRefGoogle Scholar
  7. 7.
    Nair, T.: Cardiology in india: state of the art or straight off the heart? J. Am. Coll. Cardiol. 57(3), 377–379 (2011)CrossRefGoogle Scholar
  8. 8.
    Acharya, U.R., Fujita, H., Sudarshan, V.K., Oh, S.L., Adam, M., Koh, J.E., Tan, J.H., Ghista, D.N., Martis, R.J., Chua, C.K., et al.: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl. Based Syst. 99, 146–156 (2016)CrossRefGoogle Scholar
  9. 9.
    Jayachandran, E.S., et al.: Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34(6), 985–992 (2010)CrossRefGoogle Scholar
  10. 10.
    Banerjee, S., Mitra, M.: Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63(2), 326–333 (2014)CrossRefGoogle Scholar
  11. 11.
    Papaloukas, C., Fotiadis, D.I., Likas, A., Michalis, L.K.: An ischemia detection method based on artificial neural networks. Artif. Intell. Med. 24(2), 167–178 (2002)CrossRefGoogle Scholar
  12. 12.
    Safdarian, N., Dabanloo, N.J., Attarodi, G.: A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal. J. Biomed. Sci. Eng. 7(10), 818–824 (2014)CrossRefGoogle Scholar
  13. 13.
    Lahiri, T., Kumar, U., Mishra, H., Sarkar, S., Roy, A.D.: Analysis of ecg signal by chaos principle to help automatic diagnosis of myocardial infarction. J. Sci. Ind. Res. 68, 866–870 (2009)Google Scholar
  14. 14.
    Lu, H., Ong, K., Chia, P.: An automated ECG classification system based on a neuro-fuzzy system. In: Computers in Cardiology, pp. 387–390. IEEE, Cambridge, MA, USA (2000)Google Scholar
  15. 15.
    Arif, M., Malagore, I.A., Afsar, F.A.: Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(1), 279–289 (2012)CrossRefGoogle Scholar
  16. 16.
    Mitra, S., Mitra, M., Chaudhuri, B.B.: A rough-set-based inference engine for ECG classification. IEEE Trans. Instrum. Meas. 55(6), 2198–2206 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sun, L., Lu, Y., Yang, K., Li, S.: Ecg analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)CrossRefGoogle Scholar
  18. 18.
    Al-Kindi, S.G., Tafreshi, R.: Real-time detection of myocardial infarction by evaluation of ST-segment in digital ECG. J. Med. Imaging Health Inform. 1(3), 225–230 (2011)CrossRefGoogle Scholar
  19. 19.
    Schou, A., Grove, U.S., Worbech, T.H., Andersen, M.P., Terkelsen, C.J., Kaltoft, A.K., Struijk, J.J., et al.: ECG based estimation of area at risk in acute myocardial infarction. In: Computing in Cardiology, pp. 413–416. IEEE, Hangzhou, China (2011)Google Scholar
  20. 20.
    Liu, B., Liu, J., Wang, G., Huang, K., Li, F., Zheng, Y., Luo, Y., Zhou, F.: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection. Comput. Biol. Med. 61, 178–184 (2015)CrossRefGoogle Scholar
  21. 21.
    Sharma, L., Tripathy, R., Dandapat, S.: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. 62(7), 1827–1837 (2015)CrossRefGoogle Scholar
  22. 22.
    Zheng, H., Wang, H., Nugent, C., Finlay, D.: Supervised classification models to detect the presence of old myocardial infarction in body surface potential maps. In: Computers in Cardiology, pp. 265–268. IEEE, Valencia, Spain (2006)Google Scholar
  23. 23.
    Chang, P.-C., Lin, J.-J., Hsieh, J.-C., Weng, J.: Myocardial infarction classification with multi-lead ECG using hidden Markov models and gaussian mixture models. Appl. Soft Comput. 12(10), 3165–3175 (2012)CrossRefGoogle Scholar
  24. 24.
    Tripathy, R., Dandapat, S.: Detection of myocardial infarction from vectorcardiogram using relevance vector machine. SIVip. 1–8 (2017). doi: 10.1007/s11760-017-1068-9
  25. 25.
    Yang, H., Kan, C., Liu, G., Chen, Y.: Spatiotemporal differentiation of myocardial infarctions. IEEE Trans. Autom. Sci. Eng. 10(4), 938–947 (2013)CrossRefGoogle Scholar
  26. 26.
    Le, T.Q., Bukkapatnam, S.T., Benjamin, B.A., Wilkins, B.A., Komanduri, R.: Topology and random-walk network representation of cardiac dynamics for localization of myocardial infarction. IEEE Trans. Biomed. Eng. 60(8), 2325–2331 (2013)CrossRefGoogle Scholar
  27. 27.
    Rangayyan, R.M.: Biomedical Signal Analysis, vol. 33. Wiley, New York (2015)CrossRefGoogle Scholar
  28. 28.
    Bousseljot, R., Kreiseler, D., Schnabel, A.: Nutzung der ekg-signaldatenbank cardiodat der ptb uber das internet. Biomed. Eng. 40(s1), 317–318 (1995)Google Scholar
  29. 29.
    Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P., Mark, R., Mietus, J., Moody, G., Peng, C.-K., Stanley, H.: PhysioBank, PhysioToolkit, PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  30. 30.
    Sharma, L.D., Sunkaria, R.K.: A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 87, 194–204 (2016)CrossRefGoogle Scholar
  31. 31.
    Asgari, S., Mehrnia, A., Moussavi, M.: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput. Biol. Med. 60, 132–142 (2015)CrossRefGoogle Scholar
  32. 32.
    Garcia, M., Rodenas, J., Alcaraz, R., Rieta, J.J.: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation. Comput. Methods Programs Biomed. 131, 157–168 (2016)CrossRefGoogle Scholar
  33. 33.
    Addison, P.S.: Wavelet transforms and the ECG: a review. Physiol. Meas. 26(5), R155 (2005)CrossRefGoogle Scholar
  34. 34.
    Molina-Pico, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miro-Martinez, P., Oltra-Crespo, S.: Comparative study of approximate entropy and sample entropy robustness to spikes. Artif. Intell. Med. 53(2), 97–106 (2011)CrossRefGoogle Scholar
  35. 35.
    Marwaha, P., Sunkaria, R.K.: Complexity quantification of cardiac variability time series using improved sample entropy (i-sampen). Aust. Phys. Eng. Sci. Med. 39(3), 1–9 (2016)CrossRefGoogle Scholar
  36. 36.
    Neurauter, A., Eftestol, T., Kramer-Johansen, J., Abella, B.S., Sunde, K., Wenzel, V., Lindner, K.H., Eilevstjonn, J., Myklebust, H., Steen, P.A., et al.: Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks. Resuscitation 73(2), 253–263 (2007)CrossRefGoogle Scholar
  37. 37.
    Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  38. 38.
    Oliveira, R.B., Papa, J.P., Pereira, A.S., Tavares, J.M.R.: Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput. Appl. 1–24 (2016). doi: 10.1007/s00521-016-2482-6
  39. 39.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, New York (2011)zbMATHGoogle Scholar
  40. 40.
    Mitchell, T.M: Machine Learning. McGraw-Hill (1997)Google Scholar
  41. 41.
    Papa, J.P., FalcaO, A.X., De Albuquerque, V.H.C., Tavares, J.M.R.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recogn. 45(1), 512–520 (2012)CrossRefGoogle Scholar
  42. 42.
    de Albuquerque, V.H.C., Nunes, T.M., Pereira, D.R., Luz, E.J.D.S., Menotti, D., Papa, J.P., Tavares, J.M.R.: Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput. Appl. 1–15 (2016). doi: 10.1007/s00521-016-2472-8
  43. 43.
    Iwashita, A.S., Papa, J.P., Souza, A., Falcao, A.X., Lotufo, R., Oliveira, V., De Albuquerque, V.H.C., Tavares, J.M.R.: A path-and label-cost propagation approach to speedup the training of the optimum-path forest classifier. Pattern Recogn. Lett. 40, 121–127 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringDr. B. R. Ambedkar National Institute of TechnologyJalandharIndia

Personalised recommendations