El-Dahshan, E.S.A., Mohsen, H.M., Revett, K., Salem, A.B.M.: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41(11), 5526–5545 (2014)
Article
Google Scholar
Brain Tumor Primer: A Comprehensive Introduction to Brain Tumors, 9th edn. http://www.abta.org/secure/about-brain-tumors-a-primer.pdf
Tessamma, T., Ananda Resmi, S.: Texture description of low grade and high grade glioma using statistical features in brain MRIs. Int. J. Recent Trends Eng. Technol. 4(3), 27–33 (2010)
Google Scholar
Brain Tumor Statistics—American Brain Tumor Association. http://www.abta.org/about-us/news/brain-tumor-statistics/
Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62(6), 1609–1618 (2009)
Article
Google Scholar
Mustaqeem, A., Javed, A., Fatima, T.: An efficient brain tumor detection algorithm using watershed and thresholding based segmentation. Int. J. Image Gr. Signal Process. 4(10), 34–39 (2012)
Article
Google Scholar
Idrissi, N., Ajmi, F.E.: A hybrid segmentation approach for brain tumor extraction and detection. In: International Conference on Multimedia Computing and Systems (ICMCS), pp. 235–240 (2014)
Kalaiselvi, T., Nagaraja, P.: A rapid automatic brain tumor detection method for MRI images using modified minimum error thresholding technique. Int. J. Imaging Syst. Technol. 25(1), 77–85 (2015)
Article
Google Scholar
Kharrat, A., Gasmi, K., Messaoud, M.B., Benamrane, N., Abid, M.: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine. Leonardo J. Sci. 17(1), 71–82 (2010)
Google Scholar
Qurat-Ul-Ain, G.L., Kazmi, S.B., Jaffar, M.A., Mirza, A.M.: Classification and segmentation of brain tumor using texture analysis. In: (9th) WSEAS International Conference on Recent Advances in Artificial Intelligence Knowledge Engineering and Data Bases, pp. 147–155 (2010)
Jafarpour, S., Sedghi, Z., Amirani, M.C.: A robust brain MRI classification with GLCM features. Int. J. Comput. Appl. 37(12), 1–5 (2012)
Google Scholar
Hemanth, D.J., Vijila, C.K.S., Selvakumar, A.I., Anitha, J.: Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification. Neurocomputing 130, 98–107 (2014)
Article
Google Scholar
Ain, Q., Jaffar, M.A., Choi, T.S.: Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor. Appl. Soft Comput. 21, 330–340 (2014)
Article
Google Scholar
Gupta, N., Khanna, P.: A fast and efficient computer aided diagnostic system to detect tumor from brain magnetic resonance imaging. Int. J. Imaging Syst. Technol. 25(2), 123–130 (2015)
Article
Google Scholar
Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)
Article
Google Scholar
Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–55 (2002)
Article
Google Scholar
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(1), S208–S219 (2004)
Article
Google Scholar
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)
Article
Google Scholar
Gupta, M., Gayatri, K.S., Harika, K., Rao, B.P., Rajagopalan, V., Das, A., Kesavadas, C.: Brain tumor segmentation by integrating symmetric property with region growing approach. In: 12th IEEE India International Conference (INDICON), pp. 1–5 (2015)
Shi, F., Fan, Y., Tang, S., Gilmore, J., Lin, W., & Shen, D.: Brain tissue segmentation of neonatal MR images using a longitudinal subject-specific probabilistic atlas. In SPIE Medical Imaging. International Society for Optics and Photonics. 7259, id. 725942 (2009)
Prust, M.J., Jafari-Khouzani, K., Kalpathy-Cramer, J., Polaskova, P., Batchelor, T.T., Gerstner, E.R., Dietrich, J.: Standard chemoradiation for glioblastoma results in progressive brain volume loss. Neurology 85(8), 683–691 (2015)
Porras Péres, A.R.: Accurate segmentation of brain MR images. Master of Science Thesis in Biomedical Engineering (2010)
Baris, M.M., Celik, A.O., Gezer, N.S., Ada, E.: Role of mass effect, tumor volume and peritumoral edema volume in the differential diagnosis of primary brain tumor and metastasis. Clin. Neurol. Neurosurg. 148, 67–71 (2016)
Article
Google Scholar
Dempsey, M.F., Condon, B.R., Hadley, D.M.: Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? Am. J. Neuroradiol. 26(4), 770–776 (2005)
American Brain Tumor Association: Glioblastoma and Malignant Astrocytoma. http://www.abta.org/secure/glioblastoma-brochure.pdf (2016)
Yang, M., Kpalma, K., & Ronsin, J.: A survey of shape feature extraction techniques. In: Pattern recognition. Intech, pp. 43-90 (2008).<hal-00446037>
Durgesh, K.S., Lekha, B.: Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 12(1), 1–7 (2010)
Google Scholar
Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., Kikinis, R.: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports. Acad. Radiol. 11(2), 178–189 (2004)
Article
Google Scholar
Geremia, E., Menze, B.H., Ayache, N.: Spatial decision forest for glioma segmentation in multi-channel MRI. In: Proceedings of MICCAI, LNCS. Springer, pp. 14–18 (2012)
Materka, A., Strzelecki, M.: Texture analysis methods—a review. Technical University of Lodz, Institute of Electronics, COST B11 report, Brussels, pp. 1–33 (1998)