Skip to main content
Log in

An image registration algorithm based on phase correlation and the classical Lucas–Kanade technique

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Image registration is defined as an important process in image processing in order to align two or more images. A new image registration algorithm for translated and rotated pairs of 2D images is presented in order to achieve subpixel accuracy and spend a small fraction of computation time. To achieve the accurate rotation estimation, we propose a two-step method. The first step uses the Fourier Mellin Transform and phase correlation technique to get the large rotation, then the second one uses the Fourier Mellin Transform combined with an enhance Lucas–Kanade technique to estimate the accurate rotation. For the subpixel translation estimation, the proposed algorithm suggests an improved Hanning window as a preprocessing task to reduce the noise in images then achieves a subpixel registration in two steps. The first step uses the spatial domain approach which consists of locating the peak of the cross-correlation surface, while the second uses the frequency domain approach, based on low-frequency (aliasing-free part) of aliased images. Experimental results presented in this work show that the proposed algorithm reduces the computational complexities with a better accuracy compared to other subpixel registration algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tian, Q., HUHNS, N.M.: Algorithms for subpixel registration. Comput. Vis. Graph. Image Process. 35, 220–233 (1986)

    Article  Google Scholar 

  2. Feng, S., et al.: A coarse-to-fine subpixel registration method to recover local perspective deformation in the application of image super-resolution. IEEE Trans. Image Process. 1, 53–66 (2012)

    MathSciNet  Google Scholar 

  3. Flusser, J., Zitova, B.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  4. Jenkinson, M., Smith, S.: Aglobal optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  5. Davatzikos, C.: Spatial transformation and registration o fbrain images using elastically deformable models. Comput. Vis. Image Underst. 66(2), 207–222 (1997)

    Article  Google Scholar 

  6. Gallea, R., et al.: Three-dimensional fuzzy kernel regression framework for registration of medical volume data. Pattern Recognit. 46(11), 3000–3016 (2013)

    Article  Google Scholar 

  7. Alpert, N.M., et al.: Improved methods for imageregistration. NeuroImage 3, 10–18 (1996)

    Article  Google Scholar 

  8. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992)

    Article  Google Scholar 

  9. Roche, A. et al.: The correlation ratio as a new similarity measure for multimodal image registration. In: Medical Image Computing and Computer-Assisted Interventation, pp. 1115–1124 (1998)

  10. Viola, P.: Alignment by maximisation of mutual information. Int. J. Comput. Vis. 24(2), 147–154 (1997)

    Article  Google Scholar 

  11. Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. In: Proceeding of IEEE International Conference on Cybernetics and Society, New York, NY, USA, [s.n.], pp. 163–165 (1975)

  12. Foroosh, H., Zerubia, J.B., Marc, B.: Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)

    Article  Google Scholar 

  13. Takita, K., et al.: High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. Fundam. E86A(8), 1925–1934 (2003)

    Google Scholar 

  14. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett. 33(2), 156–158 (2008)

    Article  Google Scholar 

  15. Kim, S.P., Su, W.-Y.: Subpixel accuracy image registration by spectrum cancellation. In: Proceedings of the ICASSP, pp. 153–156 (1993)

  16. Vandewalle, P., Susstrunk, S., Vetterli, M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP J. Appl. Signal Process. 2006, 233–233 (2006)

    Article  Google Scholar 

  17. Stone, H.S., et al.: A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 39(10), 2235–2243 (2001)

  18. Foroosh, H., Balci, M.: Subpixel registration directly from the phase difference. EURASIP J. Appl. Signal Process. 2006, 1–11 (2006)

    Google Scholar 

  19. Tsay, R.Y., Huang, T.S.: Multiframe image restoration and registration. Adv. Comput. Vis. Image Process. 1, 317–339 (1984)

    Google Scholar 

  20. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1270 (1996)

  21. Marcel, B., Briot, M., Murrieta, R.: Calcul de translation et rotation par la transformation de Fourier. Traitement du signal 14(2), 135–149 (1997)

    MATH  Google Scholar 

  22. Bruce, D.L., Takeo, K.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

  23. Mohanna, F., Mokhtarian, F.: Performance evaluation of corner detection algorithms under similarity and affine transforms. In: Cootes, T., Taylor, C. (eds.) Proceedings of the British Machine Conference, pp. 37.1–37.10. BMVA Press, September 2001. doi:10.5244/C.15.37

  24. Wang, F., Prinet, V., Sonede, M.: A vector filtering technique for sar interferometric phase image. Institute of Automation, Chinese Academy of Sciences, Beijing, China. http://www.kesala.net/pub/Confs/2001/wang01b-filtering.pdf (2001)

  25. Amr, Y., Li, J., Ataul, K.M.: High-speed image registration algorithm with subpixel accuracy. IEEE Signal Process. Lett. 22 (10), 1796–1800 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Douini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douini, Y., Riffi, J., Mahraz, A.M. et al. An image registration algorithm based on phase correlation and the classical Lucas–Kanade technique. SIViP 11, 1321–1328 (2017). https://doi.org/10.1007/s11760-017-1089-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1089-4

Keywords

Navigation